Senecavirus A (SVA) is an emerging picornavirus that has been associated with vesicular disease and neonatal mortality in swine. Many aspects of SVA infection biology and pathogenesis, however, remain unknown. Here the pathogenesis of SVA was investigated in finishing pigs. Animals were inoculated via the oronasal route with SVA strain SD15-26 and monitored for clinical signs and lesions associated with SVA infection. Viraemia was assessed in serum and virus shedding monitored in oral and nasal secretions and faeces by real-time reverse transcriptase quantitative PCR (RT-qPCR) and/or virus isolation. Additionally, viral load and tissue distribution were assessed during acute infection and following convalescence from disease. Clinical signs characterized by lethargy and lameness were first observed on day 4 post-inoculation (pi) and persisted for approximately 2-10 days. Vesicular lesions were first observed on day 4 pi on the snout and/or feet, affecting the coronary bands, dewclaws, interdigital space and heel/sole of SVA-infected animals. A short-term viraemia was observed between days 3 and 10 pi, whereas virus shedding was detected between days 1 and 28 pi in oral and nasal secretions and faeces. Notably, RT-qPCR and in situ hybridization (ISH) performed on tissues collected on day 38 pi revealed the presence of SVA RNA in the tonsils of all SVA-infected animals. Serological responses to SVA were characterized by early neutralizing antibody responses (day 5 pi), which coincided with decreased levels of viraemia, virus shedding and viral load in tissues. This study provides significant insights into the pathogenesis and infectious dynamics of SVA in swine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/jgv.0.000631 | DOI Listing |
J Infect Dis
January 2025
Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
This study compared the dynamics of SARS-CoV-2 viral shedding in saliva between wild-type virus-infected and Omicron-infected household cohorts. Pre-existing immunity in participants likely shortens the viral RNA shedding duration and lowers viral load peaks. Frequent saliva sampling can be a convenient tool to study viral load dynamics.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
Viruses engage in a variety of processes to subvert host defenses and create an environment amenable to replication. Here, using rotavirus as a prototype, we show that calcium conductance out of the endoplasmic reticulum by the virus encoded ion channel, , induces intercellular calcium waves that extend beyond the infected cell and contribute to pathogenesis. Viruses that lack the ability to induce this signaling show diminished viral shedding and attenuated disease in a mouse model of rotavirus diarrhea.
View Article and Find Full Text PDFJ Virol
January 2025
Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
The common cold coronaviruses are a source of ongoing morbidity and mortality particularly among elderly and immunocompromised individuals. While cross-reactive immune responses against multiple coronaviruses have been described following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination, it remains unclear if these confer any degree of cross-protection against the common cold coronaviruses. A recombinant fowl adenovirus vaccine expressing the SARS-CoV-2 spike protein (FAdV-9-S19) was generated, and protection from SARS-CoV-2 challenge was shown in K18-hACE2 mice.
View Article and Find Full Text PDFJ Virol
January 2025
Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA.
The molecular mechanisms by which vaccinia virus (VACV), the prototypical member of the poxviridae family, reprograms host cell metabolism remain largely unexplored. Additionally, cells sense and respond to fluctuating nutrient availability, thereby modulating metabolic pathways to ensure cellular homeostasis. Understanding how VACV modulates metabolic pathways in response to nutrient signals is crucial for understanding viral replication mechanisms, with the potential for developing antiviral therapies.
View Article and Find Full Text PDFJ Med Virol
January 2025
Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
Mathematical models of viral dynamics are crucial in understanding infection trajectories. However, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load data often includes limited sparse observations with significant heterogeneity. This study aims to: (1) understand the impact of patient characteristics in shaping the temporal viral load trajectory and (2) establish a data collection protocol (DCP) to reliably reconstruct individual viral load trajectories.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!