Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The tertiary structure of the proteins determines their functions. Therefore, the predicting of protein's tertiary structure, based on the primary amino acid sequence from long time, is the most important and challenging subject in biochemistry, molecular biology, and biophysics. One of the most popular protein structure prediction methods, called Hydrophobic-Polar (HP) model, is based on the observation that in polar environment hydrophobic amino acids are in the core of the molecule-in contact between them and more polar amino acids are in contact with the polar environment. In this study, we present a new mixed integer programming formulation, exact algorithm, and two heuristic algorithms to solve the protein folding problem stated as a combinatorial optimization problem in a simple cubic lattice. The results from computational runs on a set of benchmarks are favorably compared to known algorithms for solving the 3D lattice HP model as genetic algorithms, ant colony optimization algorithm, and Monte Carlo algorithm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/cmb.2016.0181 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!