Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Bluefin Trevally (Caranx melampygus) fish is mainly used for fillet production, the bones of which are discarded as a major solid waste in the fish food processing industry. In the present study, novel collagen films were prepared using the bones of Bluefin Trevally (BT). The study investigates the potential of using this collagen film as a wound dressing material.
Methods: The prepared collagen films (CFs) were characterized for their physicochemical properties using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), atomic force microscopy (AFM), tensile strength, elongation at break, etc. In vitro studies using human keratinocyte cell line (HaCaT) also proved the biocompatibility of CF. The CFs were used as wound dressing material on the experimental wounds of rats and the healing pattern was evaluated using planimetric and histopathological studies.
Results: CF prepared from the bones of BT possessed better mechanical properties. The in vitro studies demonstrated its biocompatible nature. Acceleration of wound healing in CF-treated rats was evident in the in vivo studies.
Conclusions: The study has devised a process for using fish waste in the preparation of a value-added product like wound dressing material. The CF with the required strength, biocompatibility and wound healing properties may be tried as a wound dressing material in large animals after obtaining the necessary approval.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5301/ijao.5000531 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!