Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10871847 | PMC |
http://dx.doi.org/10.1590/1516-3180.2016.001220162106 | DOI Listing |
J Anat
January 2025
Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa.
The lower limb of Homo naledi presents a suite of primitive, derived and unique morphological features that pose interesting questions about the nature of bipedal movement in this species. The exceptional representation of all skeletal elements in H. naledi makes it an excellent candidate for biomechanical analysis of gait dynamics using modern kinematic software.
View Article and Find Full Text PDFSci Rep
January 2025
Chair of Applied Mechanics, Technical University of Munich, Garching, 85748, Germany.
Ankle push-off is important for efficient, human-like walking, and many prosthetic devices mimic push-off using motors or elastic elements. The knee is extended throughout the stance phase and begins to buckle just before push-off, with timing being crucial. However, the exact mechanisms behind this buckling are still unclear.
View Article and Find Full Text PDFJ Hum Evol
January 2025
Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65212, USA.
Hominin pelvic form differs dramatically from that of other primates by having more laterally facing iliac blades, a wider sacrum, and a larger, transversely broad pelvic inlet. The orientation of the acetabulum may also differ, plausibly related to differences in load transmission during upright posture and habitual bipedal locomotion, which may, in turn, affect overall pelvic geometry. We compared acetabular orientation in humans, a phylogenetically broad sample of extant anthropoid primates, and fossil hominins including Australopithecus afarensis (A.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Rehabilitation, University Hospital Olomouc, Olomouc, Czech Republic.
Motor imagery (MI) is a mental simulation of a movement without its actual execution. Our study aimed to assess how MI of two modalities of gait (normal gait and much more posturally challenging slackline gait) affects muscle activity and lower body kinematics. Electromyography (biceps femoris, gastrocnemius medialis, rectus femoris and tibialis anterior muscles) as well as acceleration and angular velocity (shank, thigh and pelvis segments) data were collected in three tasks for both MI modalities of gait (rest, gait imagery before and after the real execution of gait) in quiet bipedal stance in 26 healthy young adults.
View Article and Find Full Text PDFPLoS One
December 2024
Lauflabor Locomotion Laboratory, Institute of Sport Science, Centre for Cognitive Science, Technische Universität Darmstadt, Hessen, Germany.
Maintaining balance during human walking hinges on the exquisite orchestration of whole-body angular momentum (WBAM). This study delves into the regulation of WBAM during gait by examining balance strategies in response to upper-body moment perturbations in the frontal plane. A portable Angular Momentum Perturbator (AMP) was utilized in this work, capable of generating perturbation torques on the upper body while minimizing the impact on the center of mass (CoM) excursions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!