Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It has been almost 30 years since RNA interference (RNAi) was shown to silence genes via double-stranded RNAs (dsRNAs) in Caenorhabditis elegans (Fire et al. 1998). 20-30-nucleotide (nt) small non-coding RNAs are a key element of the RNAi machinery. Recently, phased small interfering RNAs (phasiRNAs), small RNAs that are generated from a long RNA precursor at intervals of 21 to 26-nt, have been identified in plants and animals. In Drosophila, phasiRNAs are generated by the endonuclease, Zucchini (Zuc), in germlines. These phasiRNAs, known as one of PIWI-interacting RNAs (piRNAs), mainly repress transposable elements. Similarly, reproduction-specific phasiRNAs have been identified in the family Poaceae, although DICER LIKE (DCL) protein-dependent phasiRNA biogenesis in rice is distinct from piRNA biogenesis in animals. In plants, phasiRNA biogenesis is initiated when 22-nt microRNAs (miRNAs) cleave single-stranded target RNAs. Subsequently, RNA-dependent RNA polymerase (RDR) forms dsRNAs from the cleaved RNAs, and dsRNAs are further processed by DCLs into 21 to 24-nt phasiRNAs. Finally, the phasiRNAs are loaded to ARGONAUTE (AGO) proteins to induce RNA-silencing. There are diverse types of phasiRNA precursors and the miRNAs that trigger the biogenesis. Their expression patterns also differ among plant species, suggesting that species-specific combinations of these triggers dictate the spatio-temporal pattern of phasiRNA biogenesis during development, or in response to environmental stimuli.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5219027 | PMC |
http://dx.doi.org/10.1007/s10265-016-0878-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!