In order to improve our understanding of the potential preventive and therapeutic role of metformin, the present study aimed to investigate the capability of low-dose metformin in the efficient inhibition of cancer development and the reduction of the metastasis of endometrial adenocarcinoma type I and primary endometrial epithelial cells (eEPs), with the drug acting as a treatment in a hyperinsulinemic environment exposed to high and normal glucose conditions. The Ishikawa endometrial adenocarcinoma cell line and primary eEPs were exposed to an environment with high (17 mM) or normal glucose (5 mM) and treated with insulin, low-dose metformin (0.1 mM) or a combined treatment. Metastatic potential was assessed by migration and invasion assays, and relative cell proliferation was determined. Metformin at a low dose potently inhibited the insulin action, decreasing the ability of the endometrial cancer (EC) cell line to migrate and invade in a high and normal glucose environment, and decreasing the migration ability of the primary eEPs. In the EC cell line, the insulin treatment increased the proliferation, without any subsequent reduction of proliferation by the addition of 0.1 mM metformin; however, relative cell proliferation sensitivity to metformin was observed in the range between 1 and 5 mM regardless of the glucose concentration present. Overall, metformin at 0.1 mM is not efficient enough to decrease the proliferation in an EC cell line. However, at this concentration, metformin can inhibit the insulin action in endometrial epithelial cancer cells, demonstrating an anti-metastatic effect in high and normal glucose environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5104141PMC
http://dx.doi.org/10.3892/ol.2016.5041DOI Listing

Publication Analysis

Top Keywords

normal glucose
20
high normal
16
metformin
9
metastatic potential
8
endometrial cancer
8
cancer cells
8
glucose environment
8
low-dose metformin
8
metformin efficient
8
endometrial adenocarcinoma
8

Similar Publications

Weight cycling exacerbates glucose intolerance and hepatic triglyceride storage in mice with a history of chronic high fat diet exposure.

J Transl Med

January 2025

Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.

Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.

View Article and Find Full Text PDF

Background: Family income to poverty ratio (PIR) may have independent effects on diet and lifestyle factors and the development of prediabetes and diabetes, as well as on mortality. It is unclear how the protective effect of a healthy lifestyle against death differs between individuals with different glucose metabolic profiles and whether PIR mediates this effect. This study aimed to explore whether healthy lifestyle and family PIR reduced the risk of all-cause mortality in participants with different metabolic status and the mediating role of PIR.

View Article and Find Full Text PDF

Heavy alcohol consumption is a known risk factor for type 2 diabetes (T2D), However, the moderating effect of fasting plasma glucose (FPG) levels remains unclear. This study explores the relationship between alcohol intake and T2D risk across FPG strata in a Japanese cohort. Data from 15,453 participants in the NAGALA cohort were analyzed over 5.

View Article and Find Full Text PDF

Accurate and continuous blood glucose monitoring is essential for effective diabetes management, yet traditional finger pricking methods are often inconvenient and painful. To address this issue, photoplethysmography (PPG) presents a promising non-invasive alternative for estimating blood glucose levels. In this study, we propose an innovative 1-second signal segmentation method and evaluate the performance of three advanced deep learning models using a novel dataset to estimate blood glucose levels from PPG signals.

View Article and Find Full Text PDF

Background: Idiopathic pulmonary fibrosis (IPF) is a fibrosing interstitial pneumonia with restrictive ventilation. Recently, the structural and functional defects of small airways have received attention in the early pathogenesis of IPF. This study aimed to elucidate the characteristics of small airway epithelial dysfunction in patients with IPF and explore novel therapeutic interventions to impede IPF progression by targeting the dysfunctional small airways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!