Children with P2RY8-CRLF2-positive acute lymphoblastic leukemia have an increased relapse risk. Their mutational and transcriptional landscape, as well as the respective patterns at relapse remain largely elusive. We, therefore, performed an integrated analysis of whole-exome and RNA sequencing in 41 major clone fusion-positive cases including 19 matched diagnosis/relapse pairs. We detected a variety of frequently subclonal and highly instable JAK/STAT but also RTK/Ras pathway-activating mutations in 76% of cases at diagnosis and virtually all relapses. Unlike P2RY8-CRLF2 that was lost in 32% of relapses, all other genomic alterations affecting lymphoid development (58%) and cell cycle (39%) remained stable. Only IKZF1 alterations predominated in relapsing cases (P=0.001) and increased from initially 36 to 58% in matched cases. IKZF1's critical role is further corroborated by its specific transcriptional signature comprising stem cell features with signs of impaired lymphoid differentiation, enhanced focal adhesion, activated hypoxia pathway, deregulated cell cycle and increased drug resistance. Our findings support the notion that P2RY8-CRLF2 is dispensable for relapse development and instead highlight the prominent rank of IKZF1 for relapse development by mediating self-renewal and homing to the bone marrow niche. Consequently, reverting aberrant IKAROS signaling or its disparate programs emerges as an attractive potential treatment option in these leukemias.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5508072 | PMC |
http://dx.doi.org/10.1038/leu.2016.365 | DOI Listing |
PeerJ
January 2025
Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China.
is a deciduous shrub or small tree. It is a popular ornamental plant because of its beautiful leaves, which change colour in autumn. This study revealed 116 genes within the genome of .
View Article and Find Full Text PDFObjectives: To explore the landscape of BRCA1/2 mutations in gastric cancer patients.
Methods: Next-generation sequencing (NGS), Sanger sequencing, reverse transcription quantitative polymerase chain reaction (RT-qPCR), Immunohistochemistry, The Cancer Genome Atlas (TCGA), gnomAD, and DAVID.
Results: With 95% of bases boasting a phred score surpassing 30 and a minimum coverage depth of 500X, our NGS approach ensures high-quality data acquisition.
Plant Cell Environ
January 2025
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization. Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, P. R. China.
Light is one of the most important environmental factors that affect plant growth and development. It also stimulates anthocyanin biosynthesis in plants. However, the precise molecular mechanisms through which light regulates anthocyanin biosynthesis, particularly in non-model plant species, remain poorly understood.
View Article and Find Full Text PDFGenetica
January 2025
School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China.
Gene duplications provide evolutionary potentials for generating novel functions. Chimonanthus praecox and C. salicifolius are closely related species from Calycantaceae, Magnoliids.
View Article and Find Full Text PDFSubcell Biochem
January 2025
Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.
Healthy brain functioning requires a continuous fine-tuning of gene expression, involving changes in the epigenetic landscape and 3D chromatin organization. Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD) are three multifactorial neurodegenerative diseases (NDDs) that are partially explained by genetics (gene mutations and genetic risk factors) and influenced by non-genetic factors (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!