NCBI's Conserved Domain Database (CDD) aims at annotating biomolecular sequences with the location of evolutionarily conserved protein domain footprints, and functional sites inferred from such footprints. An archive of pre-computed domain annotation is maintained for proteins tracked by NCBI's Entrez database, and live search services are offered as well. CDD curation staff supplements a comprehensive collection of protein domain and protein family models, which have been imported from external providers, with representations of selected domain families that are curated in-house and organized into hierarchical classifications of functionally distinct families and sub-families. CDD also supports comparative analyses of protein families via conserved domain architectures, and a recent curation effort focuses on providing functional characterizations of distinct subfamily architectures using SPARCLE: Subfamily Protein Architecture Labeling Engine. CDD can be accessed at https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5210587PMC
http://dx.doi.org/10.1093/nar/gkw1129DOI Listing

Publication Analysis

Top Keywords

domain architectures
8
conserved domain
8
protein domain
8
domain
7
protein
5
cdd/sparcle functional
4
functional classification
4
classification proteins
4
proteins subfamily
4
subfamily domain
4

Similar Publications

CLIPA protein pairs function as cofactors for prophenoloxidase activation in Anopheles gambiae.

Insect Biochem Mol Biol

January 2025

Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA. Electronic address:

Insect prophenoloxidases (proPO) are activated during immune responses by a proPO activating protease (PAP) in the presence of a high molecular weight cofactor assembled from serine protease homologs (SPH) that lack proteolytic activity. PAPs and the SPHs have a similar architecture, with an amino-terminal clip domain and a carboxyl-terminal protease domain. The SPHs belong to CLIPA subfamily of SP-related proteins.

View Article and Find Full Text PDF

Secure IoT data dissemination with blockchain and transfer learning techniques.

Sci Rep

January 2025

Torrens University Australia, Fortitude Valley, QLD 4006, Leaders Institute, 76 Park Road, Woolloongabba, QLD 4102, Brisbane, Queensland, Australia.

Article Synopsis
  • Streaming IoT data is crucial for building trust in sustainable IoT solutions, but current systems often face issues with reliability, security, and transparency due to their centralized structures.
  • The research introduces TraVel, a framework that uses blockchain and transfer learning to improve the security of IoT data management, utilizing decentralized IPFS for data storage and a private Ethereum blockchain for enhanced data integrity.
  • TraVel implements self-executing smart contracts for access control and uses an adversarial domain adaptation model to filter out malicious data, ensuring only validated data is stored, with successful performance shown in simulations.
View Article and Find Full Text PDF

Tiny machine learning (TinyML) and edge intelligence have emerged as pivotal paradigms for enabling machine learning on resource-constrained devices situated at the extreme edge of networks. In this paper, we explore the transformative potential of TinyML in facilitating pervasive, low-power cardiovascular monitoring and real-time analytics for patients with cardiac anomalies, leveraging wearable devices as the primary interface. To begin with, we provide an overview of TinyML software and hardware enablers, accompanied by an examination of networking solutions such as Low-power Wide area network (LPWAN) that facilitate the seamless deployment of TinyML frameworks.

View Article and Find Full Text PDF

The growing importance of state assessments in civil engineering has led to intensive research into the development of damage identification methods based on vibrations. Natural frequencies and modal shapes have garnered great interest because modal parameters are invariant of structure. Moreover, thanks to the global nature of modal parameters, their variations are not limited to the location of the damage.

View Article and Find Full Text PDF

Object detection is a pivotal research domain within computer vision, with applications spanning from autonomous vehicles to medical diagnostics. This comprehensive survey presents an in-depth analysis of the evolution and significant advancements in object detection, emphasizing the critical role of machine learning (ML) and deep learning (DL) techniques. We explore a wide spectrum of methodologies, ranging from traditional approaches to the latest DL models, thoroughly evaluating their performance, strengths, and limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!