The MalaCards human disease database (http://www.malacards.org/) is an integrated compendium of annotated diseases mined from 68 data sources. MalaCards has a web card for each of ∼20 000 disease entries, in six global categories. It portrays a broad array of annotation topics in 15 sections, including Summaries, Symptoms, Anatomical Context, Drugs, Genetic Tests, Variations and Publications. The Aliases and Classifications section reflects an algorithm for disease name integration across often-conflicting sources, providing effective annotation consolidation. A central feature is a balanced Genes section, with scores reflecting the strength of disease-gene associations. This is accompanied by other gene-related disease information such as pathways, mouse phenotypes and GO-terms, stemming from MalaCards' affiliation with the GeneCards Suite of databases. MalaCards' capacity to inter-link information from complementary sources, along with its elaborate search function, relational database infrastructure and convenient data dumps, allows it to tackle its rich disease annotation landscape, and facilitates systems analyses and genome sequence interpretation. MalaCards adopts a 'flat' disease-card approach, but each card is mapped to popular hierarchical ontologies (e.g. International Classification of Diseases, Human Phenotype Ontology and Unified Medical Language System) and also contains information about multi-level relations among diseases, thereby providing an optimal tool for disease representation and scrutiny.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5210521 | PMC |
http://dx.doi.org/10.1093/nar/gkw1012 | DOI Listing |
Hum Gene Ther
January 2025
Managing Editor, Human Gene Therapy, Mary Ann Liebert, Inc., Publishers, New Rochelle, New York, USA.
ACS Nano
January 2025
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
Ferroptosis is a classic type of programmed cell death characterized by iron dependence, which is closely associated with many diseases such as cancer, intestinal ischemic diseases, and nervous system diseases. Transferrin (Tf) is responsible for ferric-ion delivery owing to its natural Fe binding ability and plays a crucial role in ferroptosis. However, Tf is not considered as a classic druggable target for ferroptosis-associated diseases since systemic perturbation of Tf would dramatically disrupt blood iron homeostasis.
View Article and Find Full Text PDFInfect Dis Ther
January 2025
Christian Medical College, Vellore, Tamil Nadu, India.
Tuberculous meningitis (TBM) disables more than a third of its sufferers. Recent research has focused on optimizing the antitubercular regimen, mainly by increasing the dosage of rifampicin. However, pyrazinamide, with higher penetration into the central nervous system, is generally overlooked.
View Article and Find Full Text PDFCurr Treat Options Oncol
January 2025
Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India.
Integrating clinical datasets in breast cancer research emerges as a necessary tool for advancing our knowledge of the disease and enhancing patient outcomes. Synthesizing diverse datasets offers advantages, from facilitating evidence-based insights to enabling predictive analytics and precision medicine strategies. Crucially, effective integration of clinical datasets necessitates collaborative efforts, policy interventions, and technological advancements to elevate global standards of breast cancer care.
View Article and Find Full Text PDFAngiogenesis
January 2025
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China.
Angiogenesis describes the sprouting of blood vessels from existing vasculatures and it plays a pivotal role in disease progress such as diabetes, age-related macular degeneration and cancer. However, the most widely used anti-angiogenic agents targeting vascular endothelial growth factor (VEGF) pathway still lacked of specificity and therapeutic efficacy. To establish a method suitable for high-throughput drug screening and faithfully recapitulate the feature of in vivo angiogenesis, we generated a PECAM1-mRuby3-secNluc; ACTA2-EGFP dual reporter human pluripotent stem cell (hPSC) line and utilizing the cell line to establish a visualized and quantifiable in vitro angiogenesis model with stem cell-derived vascular organoid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!