In the expanding repertoire of small noncoding RNAs (ncRNAs), tRNA-derived RNA fragments (tRFs) have been identified in all domains of life. Their existence in plants has been already proven but no detailed analysis has been performed. Here, short tRFs of 19-26 nucleotides were retrieved from Arabidopsis thaliana small RNA libraries obtained from various tissues, plants submitted to abiotic stress or fractions immunoprecipitated with ARGONAUTE 1 (AGO1). Large differences in the tRF populations of each extract were observed. Depending on the tRNA, either tRF-5D (due to a cleavage in the D region) or tRF-3T (via a cleavage in the T region) were found and hot spots of tRNA cleavages have been identified. Interestingly, up to 25% of the tRFs originate from plastid tRNAs and we provide evidence that mitochondrial tRNAs can also be a source of tRFs. Very specific tRF-5D deriving not only from nucleus-encoded but also from plastid-encoded tRNAs are strongly enriched in AGO1 immunoprecipitates. We demonstrate that the organellar tRFs are not found within chloroplasts or mitochondria but rather accumulate outside the organelles. These observations suggest that some organellar tRFs could play regulatory functions within the plant cell and may be part of a signaling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389709 | PMC |
http://dx.doi.org/10.1093/nar/gkw1122 | DOI Listing |
BMC Cancer
January 2025
Department of Respiratory Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
Background: Lung cancer (LC) is the leading cause of cancer-related death in humans. tRNA-derived small RNA (tsRNA) is a novel biomarker that plays a crucial role in the genesis and development of LC. In this study, we aimed to investigate the value of differentially expressed tsRNAs in LC through meta-analysis.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 210000 Nanjing, Jiangsu, China.
Background: Pre-eclampsia (PE) is a gestational disorder that significantly endangers maternal and fetal health. Transfer ribonucleic acid (tRNA)-derived small RNAs (tsRNAs) are important in the progression and diagnosis of various diseases. However, their role in the development of PE is unclear.
View Article and Find Full Text PDFCells
January 2025
Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305, USA.
tRNA molecules are among the most fundamental and evolutionarily conserved RNA types, primarily facilitating the translation of genetic information from mRNA into proteins. Beyond their canonical role as adaptor molecules during protein synthesis, tRNAs have evolved to perform additional functions. One such non-canonical role for tRNAs is through the generation of tRNA-derived fragments via specific cleavage processes.
View Article and Find Full Text PDFEmerg Microbes Infect
January 2025
Key Laboratory of Jiangxi Province for Transfusion Medicine, Department of Blood Transfusion, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China.
The tRNA-derived small RNAs (tsRNAs) are a new class of non coding RNAs, which are stable in body fluids and can be used as potential biomarkers for disease diagnosis. However, the exact value of tsRNAs in the diagnosis of tuberculosis (TB) is still unclear. The objective of the present study was to evaluate the performance of the serum tsRNAs biosignature to distinguish between active TB, healthy controls, latent TB infection, and other respiratory diseases.
View Article and Find Full Text PDFJ Cell Biochem
January 2025
Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
tRNA-derived fragments (tRFs) are a newly recognized class of small noncoding RNAs (sncRNAs) that play significant roles in various diseases. The Wnt pathway plays a key role in various physiological processes such as embryonic development, tissue renewal and regeneration. In the regulation of Wnt/β-catenin, Forkhead box k1(FOXK1), Frizzled class receptor 3 (FZD3), and Wnt5b can be targeted and inhibited by three tRFs: tRF3008A targets FOXK1 to inhibit colorectal cancer (CRC), 5'-tiRNAVal targets FZD3 to inhibit breast cancer (BrC), and tRF-22-8BWS7K092 targets Wnt5b to induce ferroptosis in lung cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!