Complete genome sequencing of cytoplasmically inherited chloroplast DNA provides novel insights into the origins of clonally propagated crops such as banana and plantain ( spp.). This study describes the structural organization of the chloroplast genome of Colla and its phylogenetic relationship with other wild progenitors of the domesticated banana cultivars. The chloroplast genome was sequenced using Illumina HiSeq 2000 platform, followed by a combination of de novo short-read assembly and reference-guided mapping of contigs to generate complete plastome sequence. The chloroplast genome is 169,503 bp in length, exhibits a typical quadripartite structural organization with a large single-copy (LSC; 87,828 bp) region and a small single-copy (SSC; 11,547 bp) region interspersed between inverted repeat (IRa/b; 35,064 bp) regions. Overall, its gene content, size, and gene order were identical to that of Colla with extensive expansion of the inverted repeat-small single-copy (IR-SSC) junctions. Comparative analyses revealed the conserved IRa-SSC expansion in three wild species and members of the order Zingiberales. In contrast, IRb-SSC expansion was conspicuously absent in the sister taxon Nee and related species of Zingiberales. Interestingly, phylogenomic assessment based on whole-plastome and protein-coding gene sets have provided robust support for the association of and as a sister group, despite the variation in IRb-SSC expansion. Although the current study substantiates the infrageneric IRb-SSC fluctuations in Musaceae, extensive taxon sampling is necessary to confirm whether the accessions of section have undergone independent IRb-SSC expansion relative to section .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3835/plantgenome2015.09.0089 | DOI Listing |
Tree Physiol
January 2025
Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China.
Modulation of stomatal development and movement is a promising approach for creating water-conserving plants. Here, we identified and characterized the PagHCF106 gene of poplar (Populus alba × Populus glandulosa). The PagHCF106 protein localized predominantly to the chloroplast, and the PagHCF106 gene exhibited tissue-specific expression pattern.
View Article and Find Full Text PDFMol Biol Rep
January 2025
School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China.
Background: Paeonia lactiflora Pall., a member of Paeoniaceae family, is a medicinal herb widely used in traditional Chinese medicine. Chloroplasts are multifunctional organelles containing distinct genetic material.
View Article and Find Full Text PDFMitochondrial DNA B Resour
January 2025
Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China.
is a popular ornamental aquatic plant for aquarists, although only six species are found in China. Destruction of the natural habitats of for human activities has led to a decline in its numbers. In this report, we sequenced and annotated the chloroplast genome for the first time.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China.
Introduction: Mitochondria are essential organelles that provide energy for plants. They are semi-autonomous, maternally inherited, and closely linked to cytoplasmic male sterility (CMS) in plants. , a widely used medicinal plant from the Caprifoliaceae family, is rich in chlorogenic acid (CGA) and its analogues, which are known for their antiviral and anticancer properties.
View Article and Find Full Text PDFLife (Basel)
January 2025
Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China.
, a marine benthic diatom, holds promise for human nutrition and health as well as for aquaculture applications. However, the scarcity of organelle genome data within the Navicula clade has impeded a comprehensive understanding and utilization of this group. Our research presents a pioneering exploration into the complete mitochondrial and chloroplast genome sequences of CACC 0356, shedding light on its phylogeny and evolutionary history.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!