Catechol, nitrite, and dissolved metals are ubiquitous in source drinking water. Catechol and nitrite have been identified as precursors for halonitromethanes (HNMs), but the effect of metal ions on HNM formation during chlorination remains unclear. The main objective of this study was to investigate the effect of metal ions (Fe, Ti, Al) on the formation of trichloronitromethane (TCNM) (the most representative HNM species in disinfected water) on chlorinating catechol and nitrite. Trichloronitromethane was extracted by methyl tert-butyl ether and detected by gas chromatography. The results show that metal ions promoted the formation of TCNM and that the enhancement efficiency followed the order of Fe > Ti > Al. Trichloronitromethane formation increased greatly within 2 h, and a basic condition (pH 8-9) favored TCNM formation more than acidic or neutral conditions. The conjoint effect of the metal-ion mixtures was shown to be similar to that of the single metal ion having the highest promoting effect on TCNM formation. Our results strongly suggest that metal ions play a significant role in enhancing TCNM formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2134/jeq2016.04.0155 | DOI Listing |
Langmuir
January 2025
Perm State University, 15 Bukirev strasse, Perm 614068, Russia.
Copper(II) oxide nanoparticles (CuO NPs) are used in different industries and agriculture, thus leading to their release to the environment, which raises concerns about their ecotoxicity and biosafety. The main toxicity mechanism of nanometals is oxidative stress as a result of the formation of reactive oxygen species caused by metal ions released from nanoparticles. Bacterial biofilms are more resistant to physical and chemical factors than are planktonic cells due to the extracellular polymeric matrix (EPM), which performs a protective function.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaymaniyah, Kurdistan Regional Government, 46002, Iraq.
This study highlights the importance of developing sensitive and selective sensors for use in pharmaceutical applications for the first time. A novel iron(III)-complex, constructed from unsymmetrical tetradentate NNN'O type Schiff base ligand (E)-3-((6-aminopyridin-2-yl)imino)-1-phenyl butane-1-one (LH) and its structure of it characterized by using various spectroscopic techniques such as FT-IR, UV-Vis, elemental analysis, conductivity, magnetic susceptibility measurements and the TGA method. The correlation of all results revealed that the coordination of the (LH) with the metal ion in a molar ratio of 1:1 leads to the formation of an octahedral geometry around the metal ions.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Basic Sciences, Sari University of Agricultural Sciences and Natural Resources, P.O.Box 578, Sari, Iran.
Among the various cations, the Fe ion is one of the most critical transition metal ions in living cells for many cellular functions and enzymatic activities. The decrease or overloading of Fe can lead to different disruptions in humans. Also, Fe, highly toxic, is very common in all industrial wastewater.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Photonics and Nanoelectronics, and BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Korea.
Colloidal quantum-dot light-emitting diodes (QD-LEDs) have been significantly improved in terms of device performance and lifetime by employing zinc oxide (ZnO) as an electron transport layer (ETL). Although atomic layer deposition (ALD) allows fabrication of uniform, high-quality ZnO films with minimal defects, the high conductivity of ZnO has hindered its straightforward application as an ETL in QD-LEDs. Herein, we propose fabrication of Al-doped ZnMgO (Al:ZnMgO) ETLs for QD-LEDs through a supercycle ALD, with alternating depositions of various metal oxides.
View Article and Find Full Text PDFDalton Trans
January 2025
Institut für Anorganische Chemie, University of Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany.
A cationic N-heterocyclic phosphenium (NHP) iron tetracarbonyl complex was synthesised from the free cation and its behaviour towards various anionic reactants studied. Reactions with fluoride, chloride, and hydride sources proceeded under attachment of the anion at phosphorus to yield Fe(CO)-complexes of neutral diazaphospholenes, while bromide and iodide reacted under addition of the anion at the metal and decarbonylation to yield NHP iron halides. Reactions with amides and organometallics were unselective.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!