Fusarium head blight (FHB) is one of the most important wheat ( L.) diseases worldwide, and host resistance displays complex genetic control. A genome-wide association study (GWAS) was performed on 273 winter wheat breeding lines from the midwestern and eastern regions of the United States to identify chromosomal regions associated with FHB resistance. Genotyping-by-sequencing (GBS) was used to identify 19,992 single-nucleotide polymorphisms (SNPs) covering all 21 wheat chromosomes. Marker-trait associations were performed with different statistical models, the most appropriate being a compressed mixed linear model (cMLM) controlling for relatedness and population structure. Ten significant SNP-trait associations were detected on chromosomes 4A, 6A, 7A, 1D, 4D, and 7D, and multiple SNPs were associated with on chromosome 3B. Although combination of favorable alleles of these SNPs resulted in lower levels of severity (SEV), incidence (INC), and deoxynivalenol concentration (DON), lines carrying multiple beneficial alleles were in very low frequency for most traits. These SNPs can now be used for creating new breeding lines with different combinations of favorable alleles. This is one of the first GWAS using genomic resources from the International Wheat Genome Sequencing Consortium (IWGSC).

Download full-text PDF

Source
http://dx.doi.org/10.3835/plantgenome2015.04.0028DOI Listing

Publication Analysis

Top Keywords

genome-wide association
8
fusarium head
8
head blight
8
breeding lines
8
favorable alleles
8
wheat
5
association mapping
4
mapping fusarium
4
blight resistance
4
resistance wheat
4

Similar Publications

Perceived discrimination, recognized as a chronic psychosocial stressor, has adverse consequences on health. DNA methylation (DNAm) may be a potential mechanism by which stressors get embedded into the human body at the molecular level and subsequently affect health outcomes. However, relatively little is known about the effects of perceived discrimination on DNAm.

View Article and Find Full Text PDF

The neurobiological mechanisms driving the ictal-interictal fluctuations and the chronification of migraine remain elusive. We aimed to construct a composite genetic-microRNA model that could reflect the dynamic perturbations of the disease course and inform the pathogenesis of migraine. We prospectively recruited four groups of participants, including interictal episodic migraine (i.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction has been demonstrated to be an important hallmark of sarcopenia, yet its specific mechanism remains obscure. In this study, mitochondrial-related genes were used as instrumental variables to proxy for mitochondrial dysfunction, and summary data for sarcopenia-related traits were used as outcomes to examine their genetic association.

Methods: A total of 1,136 mitochondrial-related genes from the human MitoCarta3.

View Article and Find Full Text PDF

Objective: To investigate the causal influence of gut microbiota on small cell lung cancer (SCLC) progression using Mendelian randomisation (MR), providing insights into the gut-lung axis in lung cancer pathology.

Study Design: Analytical study. Place and Duration of the Study: Department of Radiotherapy, Binhai County People's Hospital, Yancheng, Jiangsu, China, and Department of Paediatrics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China, from January to May 2024.

View Article and Find Full Text PDF

The interplay of sex and genotype in disease associations: a comprehensive network analysis in the UK Biobank.

Hum Genomics

January 2025

Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Richards Building B304, 3700 Hamilton Walk, Philadelphia, PA, 19104, USA.

Background: Disease comorbidities and longer-term complications, arising from biologically related associations across phenotypes, can lead to increased risk of severe health outcomes. Given that many diseases exhibit sex-specific differences in their genetics, our objective was to determine whether genotype-by-sex (GxS) interactions similarly influence cross-phenotype associations. Through comparison of sex-stratified disease-disease networks (DDNs)-where nodes represent diseases and edges represent their relationships-we investigate sex differences in patterns of polygenicity and pleiotropy between diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!