Structure-function analyses of the Pth11 receptor reveal an important role for CFEM motif and redox regulation in rice blast.

New Phytol

Temasek Life Sciences Laboratory, and Department of Biological Sciences, 1 Research Link, National University of Singapore, 117604, Singapore.

Published: April 2017

The interaction of Magnaporthe oryzae, the rice blast fungus, and rice begins when M. oryzae establishes contact with the host plant surface. On perception of appropriate surface signals, M. oryzae forms appressoria and initiates host invasion. Pth11, an important G-protein-coupled receptor necessary for appressorium formation in M. oryzae, contains seven transmembrane regions and a CFEM (common in several fungal extracellular membrane proteins) domain with the characteristic eight cysteine residues. We focused on gaining further insight into the role of the CFEM domain in the putative surface sensing/response function of Pth11. Increased/constitutive expression of CFEM resulted in precocious, albeit defective, appressoria formation in wild-type M. oryzae. The Pth11 mutant, probably with disrupted disulfide bonds in the CFEM, showed delayed appressorium formation and reduced virulence. Furthermore, the accumulation of reactive oxygen species (ROS) was found to be altered in the pth11Δ strain. Strikingly, antioxidant treatment induced appressorium formation in pth11Δ. The Gα subunit MagB and the mitogen-activated protein (MAP) kinase Pmk1 were required for the formation of antioxidant-induced appressoria. We conclude that the CFEM domain of Pth11 is required for proper development of the appressoria, appressoria-like structures and pathogenicity. Highly regulated ROS homeostasis is important for Pth11-mediated appressorium formation in M. oryzae.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.14347DOI Listing

Publication Analysis

Top Keywords

appressorium formation
16
role cfem
8
rice blast
8
formation m oryzae
8
cfem domain
8
cfem
6
formation
6
pth11
5
m oryzae
5
structure-function analyses
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!