Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: The purposes of this article are to review the common biologic features of cancer and coronary artery disease assessed with PET tracers, focusing on those already used in the clinic and those with translational potential, and to discuss the current value and expected contribution of PET in diagnosis, risk stratification, and treatment monitoring.
Conclusion: PET using a wide variety of radiotracers enhances understanding of pathophysiologic changes shared by cancer and coronary artery disease, helps establish an accurate diagnosis, and aids in prognostic assessment and management decisions. It is likely that with the evolution of therapeutic strategies for blocking the development and progression of both diseases and with the introduction of novel, specific ligands in clinical practice, PET will play an ever stronger role in diagnosis, risk stratification, and monitoring of therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2214/AJR.16.16599 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!