The control over supramolecular interactions and obtaining information beyond the molecular scale is an extended challenge. The intriguing self-assembly of a perylene-3,4,9,10-tetracarboxylic acid diimide (PDI)-based novel bolaamphiphilic probe is experienced within an artificial environment that is restrained by using supramolecular crystallization and molecular recognition. The bolaamphiphile with a hydrophilic [18]-azacrown ether ring produced nanoaggregates due to differing solubilities in organic and aqueous media. A structural evolution was observed in the presence of alkali metal ions as guests. The metal complexes form a pseudo-cationic structure, which is further involved in an ionic self-assembly with biomolecules, thus resulting new spectroscopic information on the dye self-assembly. The overarching aim of this study is to emphasize the importance of the concept of supramolecular adaptability, which has been used to establish an environment-friendly behavior based on noncovalent forces, thus leading to the evolution of new assembly structures and photophysical properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201604772 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!