Self-healing polysaccharide-based hydrogels as injectable carriers for neural stem cells.

Sci Rep

Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China, Fujian Guided Tissue Regeneration (GTR) Biotechnology Co., Ltd., Fuzhou 350108, China.

Published: November 2016

Self-healing injectable hydrogels can be formulated as three-dimensional carriers for the treatment of neurological diseases with desirable advantages, such as avoiding the potential risks of cell loss during injection, protecting cells from the shearing force of injection. However, the demands for biocompatible self-healing injectable hydrogels to meet above requirements and to promote the differentiation of neural stem cells (NSCs) into neurons remain a challenge. Herein, we developed a biocompatible self-healing polysaccharide-based hydrogel system as a novel injectable carrier for the delivery of NSCs. N-carboxyethyl chitosan (CEC) and oxidized sodium alginate (OSA) are the main backbones of the hydrogel networks, denoted as CEC-l-OSA hydrogel ("l" means "linked-by"). Owing to the dynamic imine cross-links formed by a Schiff reaction between amino groups on CEC and aldehyde groups on OSA, the hydrogel possesses the ability to self-heal into a integrity after being injected from needles under physiological conditions. The CEC-l-OSA hydrogel in which the stiffness mimicking nature brain tissues (100~1000 Pa) can be finely tuned to support the proliferation and neuronal differentiation of NSCs. The multi-functional, injectable, and self-healing CEC-l-OSA hydrogels hold great promises for NSC transplantation and further treatment of neurological diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5126669PMC
http://dx.doi.org/10.1038/srep37841DOI Listing

Publication Analysis

Top Keywords

self-healing polysaccharide-based
8
neural stem
8
stem cells
8
self-healing injectable
8
injectable hydrogels
8
treatment neurological
8
neurological diseases
8
biocompatible self-healing
8
cec-l-osa hydrogel
8
self-healing
5

Similar Publications

Most of the existing hydrogel dressings have inadequacies in mechanical performance, biological activities, compatibility, or versatility, which results in the development of rapid, green, and cost-effective approaches for hydrogels in biochemical and biomedical applications becoming a top-priority task. Herein, inspired by the inherent bioactivity, water retention properties, and biocompatibility of natural polysaccharide hydrogels, we have prepared self-healing gels. Using polysaccharide (BSP), carboxymethyl chitosan (CMCS), and borax via borate ester linkages, we created hemostatic and self-healing Chinese herbal medicine hydrogels in varying concentrations (2.

View Article and Find Full Text PDF

Uncontrollable non-compressible hemorrhage and traumatic infection have been major causes of mortality and disability in both civilian and military populations. A dressing designed for point-of-care control of non-compressible hemorrhage and prevention of traumatic infections represents an urgent medical need. Here, a novel self-gelling sponge OHN@ε-pL is developed, integrating N-succinimidyl ester oxidized hyaluronic acid (OHN) and ε-poly-L-lysine (ε-pL).

View Article and Find Full Text PDF

3D Printing of a Self-Healing, Bioactive, and Dual-Cross-Linked Polysaccharide-Based Composite Hydrogel as a Scaffold for Bone Tissue Engineering.

ACS Appl Bio Mater

January 2025

Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.

Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.

View Article and Find Full Text PDF

Advances in polysaccharide-based conductive hydrogel for flexible electronics.

Carbohydr Polym

January 2025

College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; Foshan Graduate School of Innovation, Northeastern University, Foshan 528300, China. Electronic address:

Article Synopsis
  • Polysaccharides are natural polymers crucial for creating conductive hydrogels, which are widely used in flexible electronics due to their conductivity and biocompatibility.
  • The review discusses various types of polysaccharides like chitosan and cellulose, and categorizes conductive hydrogels into ionic conductive, electronic conductive, and hybrid types.
  • Key features of these hydrogels, including their mechanical properties and applications in devices like sensors and wound dressings, are highlighted, alongside challenges and future research directions in the field.
View Article and Find Full Text PDF

As the misuse of antibiotics increases bacterial resistance, the treatment of infected wounds caused by bacteria encounters significant challenges. Conventional antimicrobial dressings often fall short in their ability to inhibit bacterial infections while simultaneously promoting wound healing. To address this issue, a polysaccharide self-healing hydrogel (CPP@PDA/Que3) wound dressing is successfully developed by incorporating quercetin and polydopamine nanoparticles into a carboxymethyl chitosan matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!