Quantifying electronic band interactions in van der Waals materials using angle-resolved reflected-electron spectroscopy.

Nat Commun

Huygens-Kamerlingh Onnes Laboratorium, Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, P.O. Box 9504, NL-2300 RA Leiden, The Netherlands.

Published: November 2016

AI Article Synopsis

  • High electron mobility is a crucial property of graphene, especially in its heterostructures with hexagonal boron nitride, widely used in research and applications.
  • Despite the common assumption that the electronic states in these layered systems do not couple significantly, this study reveals that graphene and boron nitride bands show no interaction across a broad energy range.
  • The angle-resolved reflected-electron spectroscopy method we utilized can be applied to investigate interactions in other van der Waals layered materials, enhancing our understanding of how electronic coupling contributes to the creation of novel materials.

Article Abstract

High electron mobility is one of graphene's key properties, exploited for applications and fundamental research alike. Highest mobility values are found in heterostructures of graphene and hexagonal boron nitride, which consequently are widely used. However, surprisingly little is known about the interaction between the electronic states of these layered systems. Rather pragmatically, it is assumed that these do not couple significantly. Here we study the unoccupied band structure of graphite, boron nitride and their heterostructures using angle-resolved reflected-electron spectroscopy. We demonstrate that graphene and boron nitride bands do not interact over a wide energy range, despite their very similar dispersions. The method we use can be generally applied to study interactions in van der Waals systems, that is, artificial stacks of layered materials. With this we can quantitatively understand the 'chemistry of layers' by which novel materials are created via electronic coupling between the layers they are composed of.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5141287PMC
http://dx.doi.org/10.1038/ncomms13621DOI Listing

Publication Analysis

Top Keywords

boron nitride
12
interactions van
8
van der
8
der waals
8
angle-resolved reflected-electron
8
reflected-electron spectroscopy
8
quantifying electronic
4
electronic band
4
band interactions
4
waals materials
4

Similar Publications

The nonthermal destruction of aqueous film-forming foam (AFFF) stockpiles, one of the major culprits responsible for water and soil contamination by per- and polyfluoroalkyl substances (PFAS), is extremely challenging because of the coexistence of mixed recalcitrant PFAS and complicated organic matrices at extremely high concentrations. To date, the complete defluorination of undiluted AFFF at ambient conditions has not been demonstrated. This study reports a novel piezoelectric ball milling approach for treating AFFF with a total organic fluorine concentration of 9080 mg/L and total organic carbon of 234 g/L.

View Article and Find Full Text PDF

Universal Construction of Electrical Insulation and High-Thermal-Conductivity Composites Based on the In Situ Exfoliation of Boron Nitride-Graphene Hybrid Filler.

ACS Appl Mater Interfaces

January 2025

Institute of Soft-matter and Advanced Functional Materials, Gansu Province Carbon New Material Industry Technology Center, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.

Hexagonal boron nitride (h-BN), with excellent thermal conductivity and insulation capability, has garnered significant attention in the field of electronic thermal management. However, the thermal conductivity of the h-BN-enhanced polymer composite material is far from that expected because of the insurmountable interfacial thermal resistance. In order to realize the high thermal conductivity of polymer composite thermal interface materials, herein, an in situ exfoliation method has been employed to prepare a boron nitride nanosheet-graphene (BNNS-Gr) hybrid filler.

View Article and Find Full Text PDF

Ferroelectricity with concomitant Coulomb screening in van der Waals heterostructures.

Nat Nanotechnol

January 2025

State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China.

Interfacial ferroelectricity emerges in non-centrosymmetric heterostructures consisting of non-polar van der Waals (vdW) layers. Ferroelectricity with concomitant Coulomb screening can switch topological currents or superconductivity and simulate synaptic response. So far, it has only been realized in bilayer graphene moiré superlattices, posing stringent requirements to constituent materials and twist angles.

View Article and Find Full Text PDF

Metallic Electro-optic Effect in Gapped Bilayer Graphene.

Nano Lett

January 2025

Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.

Electro-optic (EO) modulation is a critical device action in photonics. Recently, the non-Drude dynamics induced by the Berry curvature dipole (BCD) in metals have attracted attention as a potential candidate for terahertz EO modulation. However, such BCD-induced EO effects can be challenging to realize, often requiring flat bands and complex materials such as a strained magic-angle twisted bilayer graphene on hexagonal boron nitride.

View Article and Find Full Text PDF

Revealing the Principles of Confining Electroplated Lithium beneath the CVD Grown Single Layer 2D Materials.

Small

January 2025

MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Owing to the nanoscale thickness, excellent mechanical and chemical stabilities, 2D materials including graphene and hexagonal boron nitride have emerged as promising artificial solid electrolyte interphase (SEI) candidates for lithium metal batteries. However, whether the implementation of 2D materials is beneficial to electrochemical performance remains controversial, and the key to confining the electroplated Li beneath the 2D materials remains elusive. Here, a nanocrystalline graphene (NG) film is synthesized on high-carbon Cu and the Li plating/stripping behavior on Cu grown with different 2D materials is investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!