What Are the Biomechanical Properties of the Taylor Spatial Frame™?

Clin Orthop Relat Res

Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK.

Published: May 2017

Background: The Taylor Spatial Frame™ (TSF) is a versatile variant of the traditional Ilizarov circular fixator. Although in widespread use, little comparative data exist to quantify the biomechanical effect of substituting the tried-and-tested Ilizarov construct for the TSF hexapod system.

Questions/purposes: This study was designed to investigate the mechanical properties of the TSF system under physiologic loads, with and without the addition of a simulated bone model, with comparison to the standard Ilizarov frame.

Methods: The mechanical behaviors of three identical four-ring TSF and Ilizarov constructs were tested under levels of axial compression, bending, and rotational torque to simulate loading during normal gait. An acrylic-pipe fracture model subsequently was mounted, using fine wires and 5 mm half pins, and the testing was repeated. Load-deformation curves, and so rigidity, for each construct were calculated, with statistical comparisons performed using paired t-tests.

Results: Under axial loading, the TSF was found to be less rigid than the Ilizarov frame (645 ± 57 N/mm versus 1269 ± 256 N/mm; mean difference, 623 N/mm; 95% CI, 438.3-808.5 N/mm; p < 0.001), but more rigid under bending and torsional loads (bending: 42 ± 9 Nm/degree versus 78 ± 13 Nm/degree; mean difference, 37 Nm/degree; 95% CI, 25.0-47.9 Nm/degree; p < 0.001; torsion: 16 ± 2 Nm/degree versus 5 ± 0.35 Nm/degree; mean difference, 11 Nm/degree; 95% CI, 9.5-12.2 Nm/degree; p < 0.001). On mounting the bone models, these relationships broadly remained in the half-pin and fine-wire groups, however the half-pin constructs were universally more rigid than those using fine wires. This effect resulted in the TSF, using half pins, showing no difference in axial rigidity to the fine-wire Ilizarov (107 ± 3 N/mm versus 107 ± 4 N/mm; mean difference, 0.05 N/mm; 95% CI, -6.99 to 7.1 N/mm; p > 0.999), while retaining greater bending and torsional rigidity. Throughout testing, a small amount of laxity was observed in the TSF construct on either side of neutral loading, amounting to 0.72 mm (±0.37 mm) for a change in loading between -10 N and 10 N axial load, and which persisted with the addition of the synthetic fracture model.

Conclusions: This study broadly shows the TSF construct to generate lower axial rigidity, but greater bending and torsional rigidity, when compared with the Ilizarov frame, under physiologic loads. The anecdotally described laxity in the TSF hexapod strut system was shown in vitro, but only at low levels of loading around neutral. It also was shown that the increased stiffness generated by use of half pins produced a TSF construct replicating the axial rigidity of a fine-wire Ilizarov frame, for which much evidence of good clinical and radiologic outcomes exist, while providing greater rigidity and so improved resistance to potentially detrimental bending and rotational shear loads.

Clinical Relevance: If replicated in the clinical setting, these findings suggest that when using the TSF, care should be taken to minimize the observed laxity around neutral with appropriate preloading of the construct, but that its use may produce constructs better able to resist bending and torsional loading, although with lower axial rigidity. Use of half pins in a TSF construct however may replicate the axial mechanical behavior of an Ilizarov construct, which is thought to be conducive to bone healing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5384917PMC
http://dx.doi.org/10.1007/s11999-016-5182-8DOI Listing

Publication Analysis

Top Keywords

taylor spatial
8
tsf
5
ilizarov
5
biomechanical properties
4
properties taylor
4
spatial frame™?
4
frame™? background
4
background taylor
4
spatial frame™
4
frame™ tsf
4

Similar Publications

A spatial assessment of temporal forest cover changes is essential for effective forest conservation and management practices. This study analyzes changes in forest cover and the evolution of forest spatial configuration using Landsat satellite imagery over the past three decades (1990-2020) in Azad Jammu and Kashmir (AJK), Pakistan. To achieve the objectives, landscape metrics and forest fragmentation analyses were applied.

View Article and Find Full Text PDF

A novel polysaccharide in the envelope of influences the septal secretion of preproteins with a YSIRK/GXXS motif.

J Bacteriol

January 2025

Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA.

Unlabelled: Bacteria transport proteins across the plasma membrane to assemble their envelope, acquire nutrients, and establish appropriate interactions with their environment. The majority of these proteins are synthesized as precursors with a cleavable N-terminal signal sequence for recognition by the Sec machinery. In , a small subset of secreted precursors carries a YSIRK/GXXS motif.

View Article and Find Full Text PDF

Single-omics approaches often provide a limited view of complex biological systems, whereas multiomics integration offers a more comprehensive understanding by combining diverse data views. However, integrating heterogeneous data types and interpreting the intricate relationships between biological features-both within and across different data views-remains a bottleneck. To address these challenges, we introduce COSIME (Cooperative Multi-view Integration and Scalable Interpretable Model Explainer).

View Article and Find Full Text PDF

Collagen stroma interactions within the extracellular microenvironment of breast tissue play a significant role in breast cancer, including risk, progression, and outcomes. Hydroxylation of proline (HYP) is a common post-translational modification directly linked to breast cancer survival and progression. Changes in HYP status lead to alterations in epithelial cell signaling, extracellular matrix remodeling, and immune cell recruitment.

View Article and Find Full Text PDF

The crowded bacterial cytoplasm is composed of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial genetically encoded multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-3,240 to +2,700 e) in live cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!