A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bacterial metabolites from intra- and inter-species influencing thermotolerance: the case of Bacillus cereus and Geobacillus stearothermophilus. | LitMetric

Bacterial metabolites from intra- and inter-species influencing thermotolerance: the case of Bacillus cereus and Geobacillus stearothermophilus.

Folia Microbiol (Praha)

Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Bioquímica y Genética de Microorganismos, Ciudad Universitaria, 66455, San Nicolás de los Garza, N.L, Mexico.

Published: May 2017

Bacterial metabolites with communicative functions could provide protection against stress conditions to members of the same species. Yet, information remains limited about protection provided by metabolites in Bacillus cereus and inter-species. This study investigated the effect of extracellular compounds derived from heat shocked (HS) and non-HS cultures of B. cereus and Geobacillus stearothermophilus on the thermotolerance of non-HS vegetative and sporulating B. cereus. Cultures of B. cereus and G. stearothermophilus were subjected to HS (42 or 65 °C respectively for 30 min) or non-HS treatments. Cells and supernatants were separated, mixed in a combined array, and then exposed to 50 °C for 60 min and viable cells determined. For spores, D values (85 and 95 °C) were evaluated after 120 h. In most cases, supernatants from HS B. cereus cultures added to non-HS B. cereus cells caused their thermotolerance to increase (D 12.2-51.9) when compared to supernatants from non-HS cultures (D 7.4-21.7). While the addition of supernatants from HS and non-HS G. stearothermophilus cultures caused the thermotolerance of non-HS cells from B. cereus to decrease initially (D 3.7-7.1), a subsequent increase was detected in most cases (D 18-97.7). In most cases, supernatants from sporulating G. stearothermophilus added to sporulating cells of B. cereus caused the thermotolerance of B. cereus 4810 spores to decline, whereas that of B. cereus 14579 increased. This study clearly shows that metabolites in supernatants from either the same or different species (such as G. stearothermophilus) influence the thermotolerance of B. cereus.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12223-016-0487-2DOI Listing

Publication Analysis

Top Keywords

cereus
12
caused thermotolerance
12
bacterial metabolites
8
bacillus cereus
8
cereus geobacillus
8
geobacillus stearothermophilus
8
non-hs cultures
8
cultures cereus
8
thermotolerance non-hs
8
cereus cultures
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!