In this paper we analyse the genetic evolution of a diploid hermaphroditic population, which is modelled by a three-type nonlinear birth-and-death process with competition and Mendelian reproduction. In a recent paper, Collet et al. (J Math Biol 67(3):569-607, 2013) have shown that, on the mutation time-scale, the process converges to the Trait-Substitution Sequence of adaptive dynamics, stepping from one homozygotic state to another with higher fitness. We prove that, under the assumption that a dominant allele is also the fittest one, the recessive allele survives for a time of order at least [Formula: see text], where K is the size of the population and [Formula: see text].
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00285-016-1081-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!