Non-invasive brain stimulation as a tool to study cerebellar-M1 interactions in humans.

Cerebellum Ataxias

Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, WC1N 3BG UK.

Published: November 2016

The recent development of non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) has allowed the non-invasive assessment of cerebellar function in humans. Early studies showed that cerebellar activity, as reflected in the excitability of the dentate-thalamo-cortical pathway, can be assessed with paired stimulation of the cerebellum and the primary motor cortex (M1) (cerebellar inhibition of motor cortex, CBI). Following this, many attempts have been made, using techniques such as repetitive TMS and transcranial electrical stimulation (TES), to modulate the activity of the cerebellum and the dentate-thalamo-cortical output, and measure their impact on M1 activity. The present article reviews literature concerned with the impact of non-invasive stimulation of cerebellum on M1 measures of excitability and "plasticity" in both healthy and clinical populations. The main conclusion from the 27 reviewed articles is that the effects of cerebellar "plasticity" protocols on M1 activity are generally inconsistent. Nevertheless, two measurements showed relatively reproducible effects in healthy individuals: reduced response of M1 to sensorimotor "plasticity" (paired-associative stimulation, PAS) and reduced CBI following repetitive TMS and TES. We discuss current challenges, such as the low power of reviewed studies, variability in stimulation parameters employed and lack of understanding of physiological mechanisms underlying CBI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5111316PMC
http://dx.doi.org/10.1186/s40673-016-0057-zDOI Listing

Publication Analysis

Top Keywords

non-invasive brain
8
stimulation
8
brain stimulation
8
stimulation cerebellum
8
motor cortex
8
repetitive tms
8
non-invasive
4
stimulation tool
4
tool study
4
study cerebellar-m1
4

Similar Publications

Background: Diagnostics for neurodegenerative diseases lack non-invasive approaches suitable for early-stage biochemical screening and routine examination of neuropathology. Biomarkers of neurodegenerative diseases pass through the brain-nose interface (BNI) and accumulate in nasal secretion. Sample collection from the brain-nose interface presents a compelling prospect as basis for a non-invasive molecular diagnosis of neuropathologies.

View Article and Find Full Text PDF

Challenges of Investigating Compartmentalized Brain Energy Metabolism Using Nuclear Magnetic Resonance Spectroscopy in vivo.

Neurochem Res

January 2025

Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.

Brain function requires continuous energy supply. Thus, unraveling brain metabolic regulation is critical not only for our basic understanding of overall brain function, but also for the cellular basis of functional neuroimaging techniques. While it is known that brain energy metabolism is exquisitely compartmentalized between astrocytes and neurons, the metabolic and neuro-energetic basis of brain activity is far from fully understood.

View Article and Find Full Text PDF

The link between eye movements and cognitive function in mild to moderate Alzheimer's disease.

Exp Brain Res

January 2025

Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu Province, People's Republic of China.

This study investigated the relationship between eye movement parameters and cognitive function in patients with mild to moderate Alzheimer's disease (AD). A total of 80 patients with AD (mild and moderate) and 34 normal controls (NC) participated. Neuropsychological assessments were conducted using the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA), while eye movements were recorded using eye-tracking technology.

View Article and Find Full Text PDF

Background: Postoperative delirium (POD) is the most common neurological adverse event among elderly patients undergoing surgery. POD is associated with an increased risk for postoperative complications, long-term cognitive decline, an increase in morbidity and mortality as well as extended hospital stays. Delirium prevention and treatment options are currently limited.

View Article and Find Full Text PDF

Evolving concepts in intracranial pressure monitoring - from traditional monitoring to precision medicine.

Neurotherapeutics

January 2025

Division of Neurosciences Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA. Electronic address:

A wide range of acute brain injuries, including both traumatic and non-traumatic causes, can result in elevated intracranial pressure (ICP), which in turn can cause further secondary injury to the brain, initiating a vicious cascade of propagating injury. Elevated ICP is therefore a neurological injury that requires intensive monitoring and time-sensitive interventions. Patients at high risk for developing elevated ICP undergo placement of invasive ICP monitors including external ventricular drains, intraparenchymal ICP monitors, and lumbar drains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!