Cannabinoid receptor interacting protein 1a (CRIP1a) is a CB receptor (CBR) distal C-terminal-associated protein that alters CBR interactions with G-proteins. We tested the hypothesis that CRIP1a is capable of also altering CBR interactions with β-arrestin proteins that interact with the CBR at the C-terminus. Coimmunoprecipitation studies indicated that CBR associates in complexes with either CRIP1a or β-arrestin, but CRIP1a and β-arrestin fail to coimmunoprecipitate with each other. This suggests a competition for CRIP1a and β-arrestin binding to the CBR, which we hypothesized could attenuate the action of β-arrestin to mediate CBR internalization. We determined that agonist-mediated reduction of the density of cell surface endogenously expressed CBRs was clathrin and dynamin dependent and could be modeled as agonist-induced aggregation of transiently expressed GFP-CBR. CRIP1a overexpression attenuated CP55940-mediated GFP-CBR as well as endogenous β-arrestin redistribution to punctae, and conversely, CRIP1a knockdown augmented β-arrestin redistribution to punctae. Peptides mimicking the CBR C-terminus could bind to both CRIP1a in cell extracts as well as purified recombinant CRIP1a. Affinity pull-down studies revealed that phosphorylation at threonine-468 of a CBR distal C-terminus 14-mer peptide reduced CBR-CRIP1a association. Coimmunoprecipitation of CBR protein complexes demonstrated that central or distal C-terminal peptides competed for the CBR association with CRIP1a, but that a phosphorylated central C-terminal peptide competed for association with β-arrestin 1, and phosphorylated central or distal C-terminal peptides competed for association with β-arrestin 2. Thus, CRIP1a can compete with β-arrestins for interaction with C-terminal CBR domains that could affect agonist-driven, β-arrestin-mediated internalization of the CBR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267523 | PMC |
http://dx.doi.org/10.1124/mol.116.104638 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!