Design, synthesis and anti-HIV-1 RT evaluation of 2-(benzyl(4-chlorophenyl)amino)-1-(piperazin-1-yl)ethanone derivatives.

Bioorg Med Chem Lett

Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science, Pilani 333031, Rajasthan, India. Electronic address:

Published: January 2017

In this study, using molecular hybridization approach, fourteen novel 2-(benzyl(4-chlorophenyl)amino)-1-(piperazin-1-yl)ethanone derivatives (7a-n) were designed as inhibitor of HIV-1 RT. The binding affinity of the designed compounds with HIV-1 RT as well as their drug-likeness behavior was predicted using in-silico studies. All the designed compounds were synthesized, characterized and in-vitro evaluated for HIV-1 RT inhibitory activity, in which tested compounds displayed significant to weak potency against the selected target. Moreover, best active compounds of the series, 7k and 7m inhibited the activity of RT with IC values 14.18 and 12.26μM respectively. Structure Activity Relationship (SAR) studies were also performed in order to predict the influence of substitution pattern on the RT inhibitory potency. Anti-HIV-1 and cytotoxicity studies of best five RT inhibitor (7a, 7d, 7k, 7L and 7m) revealed that, except compound 7d other compounds retained significant anti-HIV-1 potency with good safety index. Best scoring pose of compound 7m was analysed in order to predict its putative binding mode with wild HIV-1 RT.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2016.11.030DOI Listing

Publication Analysis

Top Keywords

2-benzyl4-chlorophenylamino-1-piperazin-1-ylethanone derivatives
8
designed compounds
8
order predict
8
compounds
5
design synthesis
4
synthesis anti-hiv-1
4
anti-hiv-1 evaluation
4
evaluation 2-benzyl4-chlorophenylamino-1-piperazin-1-ylethanone
4
derivatives study
4
study molecular
4

Similar Publications

A preliminary ex vivo diffusion tensor imaging study of distinct aortic morphologies.

J Anat

January 2025

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.

Changes in the microstructure of the aortic wall precede the progression of various aortic pathologies, including aneurysms and dissection. Current clinical decisions with regards to surgical planning and/or radiological intervention are guided by geometric features, such as aortic diameter, since clinical imaging lacks tissue microstructural information. The aim of this proof-of-concept work is to investigate a non-invasive imaging method, diffusion tensor imaging (DTI), in ex vivo aortic tissue to gain insights into the microstructure.

View Article and Find Full Text PDF

Prokaryotic heme biosynthesis in Gram-positive bacteria follows the coproporphyrin-dependent heme biosynthesis pathway. The last step in this pathway is catalyzed by the enzyme coproheme decarboxylase, which oxidatively transforms two propionate groups into vinyl groups yielding heme b. The catalytic reaction cycle of coproheme decarboxylases exhibits four different states: the apo-form, the substrate (coproheme)-bound form, a transient three-propionate intermediate form (monovinyl, monopropionate deuteroheme; MMD), and the product (heme b)-bound form.

View Article and Find Full Text PDF

Abnormality of granulosa cells (GCs) is the critical cause of follicular atresia in premature ovarian failure (POF). RIPK3 is highly expressed in GCs derived from atretic follicles. We focus on uncovering how RIPK3 contributes to ovarian GC senescence.

View Article and Find Full Text PDF

We have developed a portfolio of antibody-based modules that can be prefabricated as standalone units and snapped together in plug-and-play fashion to create uniquely powerful multifunctional assemblies. The basic building blocks are derived from multiple pairs of native and modified Fab scaffolds and protein G (PG) variants engineered by phage display to introduce high pair-wise specificity. The variety of possible Fab-PG pairings provides a highly orthogonal system that can be exploited to perform challenging cell biology operations in a straightforward manner.

View Article and Find Full Text PDF

Assessment of tree-associated atypical myopathy risk factors in Acer pseudoplatanus (sycamore) seeds and leaves.

Equine Vet J

January 2025

Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, The Royal Veterinary College, London, UK.

Background: Sycamore tree-derived hypoglycin A (HGA) toxin causes atypical myopathy (AM), an acute, equine pasture-associated rhabdomyolysis but incidence fluctuates.

Objectives: Investigate whether tree or environmental factors influence HGA concentration in sycamore material and are associated with AM relative risk.

Study Design: Retrospective and experimental prospective study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!