The Enigmatic Esx Proteins: Looking Beyond Mycobacteria.

Trends Microbiol

Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.

Published: March 2017

Bacteria export proteins across membranes using a range of transport machineries. Type VII secretion systems (T7SSs), originally described in mycobacteria, are now known to be widespread across diverse bacterial phyla. Recent studies have characterized secretion components and mechanisms of type VII secretion in pathogenic and environmental bacteria. A variety of functions have been attributed to T7SS substrates, including interactions with eukaryotes and with other bacteria. Here, we evaluate the growing body of knowledge on T7SSs, with focus on the nonmycobacterial systems, reviewing their phylogenetic distribution, structure and function in diverse settings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tim.2016.11.004DOI Listing

Publication Analysis

Top Keywords

type vii
8
vii secretion
8
enigmatic esx
4
esx proteins
4
proteins mycobacteria
4
mycobacteria bacteria
4
bacteria export
4
export proteins
4
proteins membranes
4
membranes range
4

Similar Publications

Background: Antiplatelet drugs represent potential candidates for protecting the penumbral microcirculation during cerebral ischemia and improving the benefits of arterial recanalization in ischemic stroke. Yet while the efficacy of such adjuvant strategies has been shown to be highly time dependent, antiplatelet therapy at the acute phase of ischemic stroke cannot be envisioned until the diagnosis of stroke and its ischemic nature have been confirmed because of the presumed risk of worsening bleeding in case of intracranial hemorrhage (ICH). Here, we investigated this risk for 2 antiplatelet drugs currently being tested in clinical trials for ischemic stroke, glenzocimab and eptifibatide, in 2 mouse models of ICH.

View Article and Find Full Text PDF

The amylolytic susceptibility of starch-lipid complexes with different forms of crystallites has been studied extensively, but the fermentation properties of these complexes remain little understood. Hence, the fecal fermentation properties of starch-lipid complexes with V-type and V-type crystallites were investigated in the present study. Compared to V-type complexes, fermentation of V-type complexes caused more severe disruption to the crystallites and resulted in greater acid, reducing sugar, and short-chain fatty acids (SCFAs) production.

View Article and Find Full Text PDF

Single-cell analysis reveals ESX-1-mediated accumulation of permissive macrophages in infected mouse lungs.

Sci Adv

January 2025

Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, CA, USA.

(MTB) ESX-1, a type VII secretion system, is a key virulence determinant contributing to MTB's survival within lung mononuclear phagocytes (MNPs), but its effect on MNP recruitment and differentiation remains unknown. Here, using multiple single-cell RNA sequencing techniques, we studied the role of ESX-1 in MNP heterogeneity and response in mice and murine bone marrow-derived macrophages (BMDM). We found that ESX-1 is required for MTB to recruit diverse MNP subsets with high MTB burden.

View Article and Find Full Text PDF

Systems immunology integrates the complex endotypes of recessive dystrophic epidermolysis bullosa.

Nat Commun

January 2025

National Institute of Health and Medical Research (INSERM) UMRS-976 HIPI, Paris Cité University, Saint-Louis Hospital, 75010, Paris, France.

Endotypes are characterized by the immunological, inflammatory, metabolic, and remodelling pathways that explain the mechanisms underlying the clinical presentation (phenotype) of a disease. Recessive dystrophic epidermolysis bullosa (RDEB) is a severe blistering disease caused by COL7A1 pathogenic variants. Although underscored by animal studies, the endotypes of human RDEB are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!