The antimicrobial resistance of Salmonella strains is rapidly increasing worldwide, which poses significant threats to animal and public health. In this study, a total of 249 porcine Salmonella isolates collected in China during 2008-2015 were examined, including 155 clinical isolates from diseased pigs and 94 nonclinical isolates from healthy pigs. Based on the minimum inhibitory concentration of seven antimicrobial agents, 96.4% of the isolates were resistant to at least one of the tested antibiotics and 81.0% of them showed multidrug resistance. The highest antimicrobial resistance was observed for tetracycline (85.9%), and the lowest was found for cefotaxime (13.3%). The isolates from diseased pigs exhibited significantly higher levels of antimicrobial resistance than those from healthy pigs. Twenty-two isolates from healthy pigs were resistant to ciprofloxacin, which may inhibit the curative effectiveness of fluoroquinolones on bacterial food-borne poisoning and infections in humans caused by contaminated food. Moreover, cefotaxime resistance of the strains isolated from diseased pigs during 2013-2015 was significantly higher compared with the strains isolated during 2008-2010. Further study showed that the correlation between phenotypic and genotypic resistance varied among the isolates from different sources, and in many cases, the presence of resistance genes was not consistent with the resistance to the corresponding antimicrobials. These results are very significant for veterinary practice and public health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/mdr.2016.0132 | DOI Listing |
Viruses
December 2024
College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China.
Coinfections with porcine circovirus types 2, 3, and 4 (PCV2, PCV3, and PCV4) are increasingly being detected in the swine industry. However, there is no commercially available vaccine which prevents coinfection with PCV2, PCV3, and PCV4. The development of a vaccine expressing capsid (Cap) fusion proteins of multiple PCVs represents a promising approach for broadly preventing infection with PCVs.
View Article and Find Full Text PDFViruses
December 2024
Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJ-KLNDSCHA), College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China.
Porcine bocavirus (PBoV), classified within the genus Bocaparvovirus, has been reported worldwide. PBoV has been divided into group 1, group 2, and group 3. PBoV group 3 (G3) viruses are the most prevalent in China.
View Article and Find Full Text PDFViruses
December 2024
State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Center for Swine Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
Porcine circovirus 3 (PCV3) is a small non-enveloped circovirus associated with porcine dermatitis and nephropathy syndrome (PDNS). It has occurred worldwide and poses a serious threat to the pig industry. However, there is no commercially available vaccine.
View Article and Find Full Text PDFViruses
December 2024
Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA.
This study evaluated influenza A virus (IAV) detection and genetic diversity over time, specifically at the human-swine interface in breeding and nursery farms. Active surveillance was performed monthly in five swine farms in the Midwest United States targeting the employees, the prewean piglets at sow farms, and the same cohort of piglets in downstream nurseries. In addition, information was collected at enrollment for each employee and farm to assess production management practices, IAV vaccination status, diagnostic procedures, and biosecurity.
View Article and Find Full Text PDFViruses
December 2024
National Bio- and Agro-Defense Facility, Agricultural Research Services, United States Department of Agriculture, Manhattan, KS 66506, USA.
During the past 25 years, vesicular stomatitis virus (VSV) has produced multiple outbreaks in the US, resulting in the emergence of different viral lineages. Currently, very little is known about the pathogenesis of many of these lineages, thus limiting our understanding of the potential biological factors favoring each lineage in these outbreaks. In this study, we aimed to determine the potential phenotypic differences between two VSV Indiana (VSIV) serotype epidemic strains using a pig model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!