Kaposi's sarcoma-associated herpesvirus (KSHV), the causative agent of Kaposi's sarcoma, encodes 25 mature viral miRNAs. MCP-1-induced protein-1 (MCPIP1), a critical regulator of immune homeostasis, has been shown to suppress miRNA biosynthesis via cleavage of precursor miRNAs through its RNase domain. We demonstrate that MCPIP1 can directly cleave KSHV and EBV precursor miRNAs and that MCPIP1 expression is repressed following de novo KSHV infection. In addition, repression with siRNAs to MCPIP1 in KSHV-infected cells increased IL-6 and KSHV miRNA expression, supporting a role for MCPIP1 in IL-6 and KSHV miRNA regulation. We also provide evidence that KSHV miRNAs repress MCPIP1 expression by targeting the 3'UTR of MCPIP1. Conversely, expression of essential miRNA biogenesis components Dicer and TRBP is increased following latent KSHV infection. We propose that KSHV infection inhibits a negative regulator of miRNA biogenesis (MCPIP1) and up-regulates critical miRNA processing components to evade host mechanisms that inhibit expression of viral miRNAs. KSHV-mediated alterations in miRNA biogenesis represent a novel mechanism by which KSHV interacts with its host and a new mechanism for the regulation of viral miRNA expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5125562 | PMC |
http://dx.doi.org/10.1371/journal.pbio.2000998 | DOI Listing |
Fish Shellfish Immunol
January 2025
College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
MicroRNAs (miRNAs) are highly conserved endogenous non-coding RNAs that play a crucial role in fish immune response by regulating gene expression at the post-transcriptional level. In recent years, the viral diseases caused by infectious hematopoietic necrosis virus (IHNV) have caused significant economic losses in rainbow trout (Oncorhynchus mykiss) aquaculture, whereas the immune regulatory mechanisms of miRNAs involved in rainbow trout resistance to IHNV infection remains largely undefined. In this study, we analyzed the structural characteristics of Oncorhynchus mykiss tumor necrosis factor receptor-associated factor 3 (OmTRAF3) by bioinformatics software and explored the molecular mechanism of miR-203-3p in rainbow trout resistance to IHNV by regulating OmTRAF3 in vivo and in vitro.
View Article and Find Full Text PDFViruses
January 2025
Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA.
Since the discovery of RNA in the early 1900s, scientific understanding of RNA form and function has evolved beyond protein coding. Viruses, particularly retroviruses like human T-cell leukemia virus type 1 (HTLV-1), rely heavily on RNA and RNA post-transcriptional modifications to regulate the viral lifecycle, pathogenesis, and evasion of host immune responses. With the emergence of new sequencing technologies in the last decade, our ability to dissect the intricacies of RNA has flourished.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Life Sciences, Soochow University, Suzhou 215123, China.
Extrachromosomal circular DNAs (eccDNAs) has been found to be widespread and functional in various organisms. However, comparative analyses of pre- and post-infection of virus are rarely known. Herein, we investigated the changes in expression patterns of eccDNA following infection with cytoplasmic polyhedrosis virus (BmCPV) and explore the role of eccDNA in viral infection.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, 50134 Florence, Italy.
The mechanisms underlying post-acute sequelae of SARS-CoV-2 infection (PASC) are a topic of debate. This study examined the presence of SARS-CoV-2 microRNA (miRNA)-like small RNAs in extracellular fluids and their potential link to PASC by using a quantitative stem-loop RT-PCR MiRNA assay. Initially, it was demonstrated that three previously identified SARS-CoV-2 miRNA-like small RNAs, specifically svRNA 1 and 2 and miR-07a, were significantly expressed in infected cells in vitro and released into the supernatant following infection by different SARS-CoV-2 variants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!