We performed a two-stage molecular epidemiological study to explore DNA methylation profiles for potential biomarkers of esophageal squamous cell carcinoma (ESCC) in a Chinese population. Infinium Methylation 450K BeadChip was used to identify genes with differentially methylated CpG sites. Sixteen candidate genes were validated by sequencing 1160 CpG sites in their promoter regions using the Illumina MiSeq platform. When excluding sites with negative changes, 10 genes (BNIP3, BRCA1, CCND1, CDKN2A, HTATIP2, ITGAV, NFKB1, PIK3R1, PRDM16 and PTX3) showed significantly different methylation levels among cancer lesions, remote normal-appearing tissues, and healthy controls. PRDM16 had the highest diagnostic value with the AUC (95% CI) of 0.988 (0.965-1.000), followed by PIK3R1, with the AUC (95% CI) of 0.969 (0.928-1.000). In addition, the methylation status was higher in patients with advanced cancer stages. These results indicate that aberrant DNA methylation may be a potential biomarker for the diagnosis of ESCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5352188 | PMC |
http://dx.doi.org/10.18632/oncotarget.13510 | DOI Listing |
Zh Nevrol Psikhiatr Im S S Korsakova
December 2024
Mental Health Research Center, Moscow, Russia.
Mental disorders are complex illnesses with multifactorial etiologies involving genetic and environmental components. This review focuses on cellular models derived from the olfactory epithelium as a promising tool to study the molecular mechanisms of some neuropsychiatric diseases. The authors consider cell lines allowing the identification of potential biomarkers and pathogenetic mechanisms of schizophrenia, bipolar disorder, and Alzheimer's disease.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
Department of Pharmacognosy, University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
Alzheimer's disease (AD) is a prevalent neurological illness that affects over 80% of aged adults globally in cases of dementia. Although the exact pathophysiological causes of AD remain unclear, its pathogenesis is primarily driven by several distinct biochemical alterations: (i) the accumulation of toxic Aβ plaques, (ii) the hyperphosphorylation of tau proteins, (iii) oxidative stress resulting in cell death, and (iv) an imbalance between the two main neurotransmitters, glutamate and acetylcholine (ACh). Currently, there are very few medications available and no treatment.
View Article and Find Full Text PDFHereditas
December 2024
Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China.
Background: Cisplatin (DDP) resistance has long posed a challenge in the clinical treatment of lung cancer (LC). Insulin-like growth factor 2 binding protein 2 (IGF2BP2) has been identified as an oncogenic factor in LC, whereas its specific role in DDP resistance in LC remains unclear.
Results: In this study, we investigated the role of IGF2BP2 on DDP resistance in DDP-resistant A549 cells (A549/DDP) in vitro and in a DDP-resistant lung tumor-bearing mouse model in vivo.
Sci Rep
December 2024
Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
Solute transport family 7A member 7 (SLC7A7) mutations contribute to lysinuric protein intolerance (LPI), which is the mechanism of action that has been extensively studied. In colorectal cancer (CRC), SLC7A7 appears to play a role, but the features and mechanisms are not yet well understood. Survival was analyzed using the Kaplan-Meier analysis.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
Polymer-based catalysts have garnered significant interest for their efficiency, reusability, and compatibility with various synthesis processes. In catalytic applications, polymers offer the advantage of structural versatility, enabling functional groups to be tailored for specific catalytic activities. In this study, we developed a novel magnetic copolymer of methyl methacrylate and maleic anhydride (PMMAn), synthesized via in situ chemical polymerization of methyl methacrylate onto maleic anhydride, using benzoyl peroxide as a free-radical initiator.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!