Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Named entities such as people, locations, and organizations play a vital role in characterizing online content. They often reflect information of interest and are frequently used in search queries. Although named entities can be detected reliably from textual content, extracting relations among them is more challenging, yet useful in various applications (e.g., news recommending systems). In this paper, we present a novel model and system for learning semantic relations among named entities from collections of news articles. We model each named entity occurrence with sparse structured logistic regression, and consider the words (predictors) to be grouped based on background semantics. This sparse group LASSO approach forces the weights of word groups that do not influence the prediction towards zero. The resulting sparse structure is utilized for defining the type and strength of relations. Our unsupervised system yields a named entities' network where each relation is typed, quantified, and characterized in context. These relations are the key to understanding news material over time and customizing newsfeeds for readers. Extensive evaluation of our system on articles from TIME magazine and BBC News shows that the learned relations correlate with static semantic relatedness measures like WLM, and capture the evolving relationships among named entities over time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2016.2632117 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!