A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Temperature responses of Rubisco from Paniceae grasses provide opportunities for improving C photosynthesis. | LitMetric

Enhancing the catalytic properties of the CO-fixing enzyme Rubisco is a target for improving agricultural crop productivity. Here, we reveal extensive diversity in the kinetic response between 10 and 37 °C by Rubisco from C and C species within the grass tribe Paniceae. The CO fixation rate (kcatc) for Rubisco from the C grasses with nicotinamide adenine dinucleotide (NAD) phosphate malic enzyme (NADP-ME) and phosphoenolpyruvate carboxykinase (PCK) photosynthetic pathways was twofold greater than the kcatc of Rubisco from NAD-ME species across all temperatures. The declining response of CO/O specificity with increasing temperature was less pronounced for PCK and NADP-ME Rubisco, which would be advantageous in warmer climates relative to the NAD-ME grasses. Modelled variation in the temperature kinetics of Paniceae C Rubisco and PCK Rubisco differentially stimulated C photosynthesis relative to tobacco above and below 25 °C under current and elevated CO. Amino acid substitutions in the large subunit that could account for the catalytic variation among Paniceae Rubisco are identified; however, incompatibilities with Paniceae Rubisco biogenesis in tobacco hindered their mutagenic testing by chloroplast transformation. Circumventing these bioengineering limitations is critical to tailoring the properties of crop Rubisco to suit future climates.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nplants.2016.186DOI Listing

Publication Analysis

Top Keywords

paniceae rubisco
12
rubisco
11
kcatc rubisco
8
paniceae
5
temperature responses
4
responses rubisco
4
rubisco paniceae
4
paniceae grasses
4
grasses provide
4
provide opportunities
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!