Metagenomics is the study of microorganisms in environmental and clinical samples using high-throughput sequencing of random fragments of their DNA. Since metagenomics does not require any prior culturing of isolates, entire microbial communities can be studied directly in their natural state. In metagenomics, the abundance of genes is quantified by sorting and counting the DNA fragments. The resulting count data are high-dimensional and affected by high levels of technical and biological noise that make the statistical analysis challenging. In this article, we introduce an hierarchical overdispersed Poisson model to explore the variability in metagenomic data. By analyzing three comprehensive data sets, we show that the gene-specific variability varies substantially between genes and is dependent on biological function. We also assess the power of identifying differentially abundant genes and show that incorrect assumptions about the gene-specific variability can lead to unacceptable high rates of false positives. Finally, we evaluate shrinkage approaches to improve the variance estimation and show that the prior choice significantly affects the statistical power. The results presented in this study further elucidate the complex variance structure of metagenomic data and provide suggestions for accurate and reliable identification of differentially abundant genes.

Download full-text PDF

Source
http://dx.doi.org/10.1089/cmb.2016.0180DOI Listing

Publication Analysis

Top Keywords

differentially abundant
12
abundant genes
12
variability metagenomic
8
count data
8
identification differentially
8
metagenomic data
8
gene-specific variability
8
data
5
genes
5
variability
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!