Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper focuses on studying the influence of the heat treatment on the structure and activity of carbon supported Fe(ii)phthalocyanine (FePc/C) oxygen reduction reaction (ORR) catalysts under alkaline conditions. The FePc macrocycle was deposited onto ketjen black carbon and heated treated for 2 hours under inert atmosphere (Ar) at different temperatures (400, 500, 600, 700, 800, 900 and 1000 °C). The atomic structure of Fe in each sample has been determined by XAS and correlated to the activity and ORR mechanisms determined in electrochemical half cells and in a complete H/O anion exchange membrane fuel cells (AEM-FC). The results show that the samples prepared at 600 and 700 °C have the highest electrochemical catalytic activity for the ORR, consistent with the findings that the FeN active sites are thermally stable up to 700 °C, confirmed by both XANES linear combination fittings and EXAFS fittings. Upon annealing at temperatures above 800 °C, the FeN structure partially decomposes to small iron nanoparticles. The transition from the FeN structure to metallic Fe results in a significant loss in ORR activity and an increase in the production of undesirable HO during catalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6cp06798k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!