Rationale: In situ secondary ion mass spectrometry (SIMS) analysis requires the use of standards to unravel the instrumental mass fractionation (IMF) induced by the analytical procedures. Part of this IMF might be caused by the nature of the sample and the differences in composition and structure between the sample and the standards. This "matrix effect" has been tentatively corrected for by using standards with chemical compositions equivalent to the samples, or by the empirical use of chemical parameters. However, these corrections can only be applied to a narrow compositional range and fail to take proper account of the matrix effect when a wider chemical field is tested.
Methods: We synthesized a series of glasses whose compositions span a very large part of the NCMAS (Na O-CaO-MgO-Al O -SiO ) system. Si and Ca isotopic analyses were performed on two ion microprobes (Cameca IMS-1270 and IMS-1280).
Results: The matrix effect observed may reach 20‰ between extreme compositions and cannot be accounted for by the previously used "chemical" parameters (e.g. SiO , SiO /(SiO + Al O )) nor by the NBO/T parameter. It therefore appears necessary to consider not only the structure of the glasses, but also the nature of the different atoms. Consequently, we assessed the use of another concept, the optical basicity, based on the electronegativities of the constitutive elements of glass.
Conclusions: We show that this parameter significantly improves the efficiency of the matrix-effect correction and that it can be applied across the entire NCMAS compositional range studied here. Furthermore, the use of optical basicity reduces the number of glass standards required for a reliable isotopic study, and it can also be used to probe the structure of the glass. Copyright © 2016 John Wiley & Sons, Ltd.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rcm.7799 | DOI Listing |
Methods Mol Biol
January 2025
Natural Product Lab, Institute of Biology, Leiden University, Leiden, The Netherlands.
Natural products, particularly plants, remain a vital source of bioactive compounds owing to their unparalleled metabolic diversity across pharmaceuticals, cosmetics, foods, and agriculture. However, this diversity, encompassing not only a multitude of compounds but also their varying chemical and physical properties, presents a challenge in their effective utilization. Targeted analysis of specific metabolites, as well as untargeted approaches covering a wide metabolite range, necessitate optimal extraction solvents tailored to meet diverse requirements.
View Article and Find Full Text PDFAnal Chem
January 2025
Synthetic Molecule Design and Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States.
Single-stranded guide RNAs (sgRNAs) are important therapeutic modalities that facilitate selective genome editing by the CRISPR/Cas9 system. While these therapeutic modalities are synthesized through solid phase oligonucleotide synthesis similar to small interfering RNA (siRNAs) and antisense oligonucleotide (ASOs) therapeutics, their sequence length and complex secondary and tertiary structure hinder analytical characterization. The resulting current sgRNA methodologies have limited chromatographic selectivity near the FLP and limited MS compatibility.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
July 2024
Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, 563099, Guizhou, China.
Militarine is a monomer molecule with abundant and distinctive biological properties, also the lead member of secondary metabolites in Bletilla striata, while its biosynthesis mechanism is still unknown. To improve the production efficiency of militarine, sodium acetate and salicylic acid (SA) were introduced as elicitors into the suspension-cultured callus of B. striata.
View Article and Find Full Text PDFPlanta
January 2025
Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
Optimizing environmental factors can significantly increase the growth and secondary metabolite synthesis of hydroponically grown medicinal plants. This approach can help increase the quality and quantity of pharmacologically important metabolites to enhance therapeutic needs. Medicinal plants are key therapeutic sources for treating various ailments.
View Article and Find Full Text PDFFront Neurol
January 2025
Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Kunshan, China.
Intracerebral hemorrhage (ICH) is the most common subtype of hemorrhagic stroke causing significant morbidity and mortality. Previously clinical treatments for ICH have largely been based on a single pathophysiological perspective, and there remains a lack of curative interventions. Following the rupture of cerebral blood vessels, blood metabolites activate resident immune cells such as microglia and astrocytes, and infiltrate peripheral immune cells, leading to the release of a series of inflammatory mediators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!