The purpose of this study was to assess the synergistic effect of polydatin and vitamin C on attenuating cardiotoxicity induced by doxorubicin (DOX) in rats. Polydatin could significantly increase the activity of superoxide dismutase (SOD) and the heart rate, attenuate myocardial pathological damage, decrease malondialdehyde (MDA) content, slightly increase arterial pressure and glutathione peroxidase (GSH-Px) activity, reduce intervals of QRS, QT, and ST, and lower free fatty acid (FFA) content. The combination of polydatin and vitamin C could significantly increase arterial pressure and heart rate, decrease QRS interval and slightly reduce ST and QT intervals, significantly attenuate myocardial pathological damage, increase the activities of GSH-Px,T-SOD, Na K -ATPase, and Ca Mg -ATPase, elevate phosphocreatine (PCr) and adenosine triphosphate (ATP) contents, slightly increase adenosine diphosphate (ADP) and total adenine nucleotide (TAN) contents and PCr/ATP, and significantly decrease the contents of MDA and FFA, when compared with those in the DOX group. Meanwhile, the improvement effects on FFA content, the activities of ATPase and SOD, and contents of ATP and TAN in combination group were more obvious than those in polydatin group, and the improvement effects on arterial pressure, heart rate, interval of QRS, GSH-Px activity, and MDA, ADP, and PCr contents in combination group were slightly obvious when compared with those in polydatin group. In addition, the mRNA expression levels of AMPK-α2 and PPAR-α were slightly improved in combination group. The results illustrate that the combination of polydatin and vitamin C has the ability to enhance the myocardial protective effects by its antioxidative effect and improve energy metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1111/fcp.12258DOI Listing

Publication Analysis

Top Keywords

polydatin vitamin
16
heart rate
12
arterial pressure
12
combination group
12
cardiotoxicity induced
8
induced doxorubicin
8
attenuate myocardial
8
myocardial pathological
8
pathological damage
8
increase arterial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!