The visual system of harvestmen (Opiliones, Arachnida, Chelicerata) - a re-examination.

Front Zool

Bavarian State Collection of Zoology, SNSB, Münchhausenstraße 21, 81247 Munich, Germany.

Published: November 2016

Background: The visual systems in chelicerates are poorly understood, even though they show strong variation in eye and visual neuropil architecture, thus may provide valuable insights for the understanding of chelicerate phylogeny and eye evolution. Comparable morphological characters are desperately sought for reconstructions of the phylogeny of Chelicerata, especially with respect to Arachnida. So far, reliable data exist only for Pycnogonida, Xiphosura, Scorpiones, and Araneae. The few earlier studies of the organisation of the visual system in harvestmen are contradictory concerning the number, morphology, and position of the visual neuropils.

Results: We undertook a descriptive and comparative analysis of the neuroanatomy of the visual system in several phalangid harvestmen species. Various traditional and modern methods were used that allow comparisons with previous results (cobalt fills, DiI/DiO labelling, osmium ethyl gallate procedure, and TEM). The R-cells (photoreceptor and arhabdomeric cells) in the eyes of Opiliones are linked to a first and a second visual neuropil. The first visual neuropil receives input from all R-cell axons, in the second only few R-cells terminate in the distal part. Hence, the second visual neuropil is subdivided in a part with direct R-cell input and a part without. The arcuate body is located in a subsequent position with direct contact to the second visual neuropil.

Conclusions: This re-examination comes to conclusions different from those of all previous studies. The visual system of phalangid Opiliones occupies an intermediate position between Pycnogonida, Xiphosura, and Scorpiones on the one side, and Araneae on the other side. The projection of the R-cells is similar to that in the former grouping, the general neuropil arrangement to that in the latter taxon. However, more research on the visual systems in other chelicerate orders is needed in order to draw inferences on phylogeny or eye evolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5112708PMC
http://dx.doi.org/10.1186/s12983-016-0182-9DOI Listing

Publication Analysis

Top Keywords

visual system
16
visual neuropil
16
visual
12
second visual
12
system harvestmen
8
visual systems
8
phylogeny eye
8
eye evolution
8
pycnogonida xiphosura
8
xiphosura scorpiones
8

Similar Publications

Super-resolution microscopy has revolutionized biological imaging, enabling the visualization of structures at the nanometer length scale. Its application in live cells, however, has remained challenging. To address this, we adapted LIVE-PAINT, an approach we established in yeast, for application in live mammalian cells.

View Article and Find Full Text PDF

Purpose: Wearable electronic low vision enhancement systems (wEVES) improve visual function but are not widely adopted by people with vision impairment. Here, qualitative research methods were used to investigate the usefulness of wEVES for people with age-related macular degeneration (AMD) after an extended home trial.

Methods: Following a 12-week non-masked randomised crossover trial, semi-structured interviews were completed with 34 participants with AMD, 64.

View Article and Find Full Text PDF

In response to the pressing need for the detection of Monkeypox caused by the Monkeypox virus (MPXV), this study introduces the Enhanced Spatial-Awareness Capsule Network (ESACN), a Capsule Network architecture designed for the precise multi-class classification of dermatological images. Addressing the shortcomings of traditional Machine Learning and Deep Learning models, our ESACN model utilizes the dynamic routing and spatial hierarchy capabilities of CapsNets to differentiate complex patterns such as those seen in monkeypox, chickenpox, measles, and normal skin presentations. CapsNets' inherent ability to recognize and process crucial spatial relationships within images outperforms conventional CNNs, particularly in tasks that require the distinction of visually similar classes.

View Article and Find Full Text PDF

Characterizing molten corium-concrete interaction (MCCI) fuel debris in Fukushima reactors is essential to develop efficient methods for its removal. To enhance the accuracy of microscopic observation and focused ion beam (FIB) microsampling of MCCI fuel debris, we developed a three-dimentional FIB scanning electron microscopy (SEM) technique with a multiphase positional misalignment (MPPM) correction method. This system automatically aligns voxel positions, corrects contrast, and removes artifacts from a series of over 500 SEM images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!