Standard antimicrobial susceptibility tests are performed in vitro under normal room oxygen conditions to predict the in vivo effectiveness of antimicrobial therapy. The aim of this study was to conduct a comprehensive analysis of the effect of different oxygen levels on the antibiotic susceptibility of two strains of , , and . It was found that anoxic conditions caused reduced sensitivity of bacteria to aminoglycoside antibiotics in four of six bacteria used in the study. In addition, oxygen limitation decreased the susceptibility of strains and strains to piperacillin/tazobactam and azithromycin, respectively. In contrast, five of six bacteria became more susceptible to tetracycline antibiotics under oxygen-limiting conditions. Our data highlight the importance of considering the potential in vivo oxygen levels within the infection site when setting susceptibility breakpoints for evaluating the therapeutic potential of a drug and its effect on antibiotic sensitivity of the pathogen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5113855PMC
http://dx.doi.org/10.4137/MBI.S40767DOI Listing

Publication Analysis

Top Keywords

antibiotic sensitivity
8
oxygen levels
8
susceptibility strains
8
evaluating oxygen
4
oxygen concentrations
4
concentrations antibiotic
4
sensitivity growth
4
growth biofilm
4
biofilm formation
4
formation human
4

Similar Publications

Pseudomonas aeruginosa (P. aeruginosa) is a major pathogen associated conditions like septicaemia, respiratory disorders, and diarrhoea in poultry, particularly in Japanese quail (Coturnix japonica). The infection causes huge economical losses due to its high transmissibility, mortality and zoonotic potential.

View Article and Find Full Text PDF

The biosynthesis of silver nanoparticles (AgNPs) using cyanobacteria has gained significant attention due to its cost-effective and eco-friendly advantages in green synthesis. Additionally, biogenic AgNPs show great potential for biological applications, particularly in combating infections caused by drug-resistant bacteria and fungi. This study synthesized using the cyanobacterium Oscillatoria salina (Os-AgNPs).

View Article and Find Full Text PDF

Background: Rising antimicrobial resistance (AMR) is an acute public health emergency impeding the clinical efficacy of surgical interventions. Biliary stent placement is one of the routine surgical procedures that rarely lead to infections that are empirically managed by broad-spectrum β-lactams and fluoroquinolones. Critical priority pathogens, such as carbapenem-resistant Escherichia coli challenge treatment outcomes and infection prevention.

View Article and Find Full Text PDF

Background: Bacterial lower respiratory tract infection, particularly ventilator-associated pneumonia (VAP), is a significant cause of morbidity and mortality in children who require mechanical ventilation (MV). Microbiologic diagnosis has relied on bacterial culture, but reverse transcriptase polymerase chain reaction (RT-PCR) with bacterial targets is now available for clinical use. We compared the diagnostic performance of tracheal aspirate (TA) multiplex RT-PCR to culture in children requiring MV with suspected lower respiratory tract infection.

View Article and Find Full Text PDF

A cytochrome repressed by a MarR family regulator confers resistance to metals, nitric oxide, sulfide, and cyanide in .

Appl Environ Microbiol

January 2025

Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.

Unlabelled: is a ubiquitous environmental pathogen. Despite its remarkable adaptability, little is known about the mechanisms of stress resistance in this bacterium. Here, in a screen for iron-susceptible transposon mutants, we identified a cytochrome that protects against multiple stresses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!