Background: The papaya Y-linked region showed clear population structure, resulting in the detection of the ancestral male population that domesticated hermaphrodite papayas were selected from. The same populations were used to study nucleotide diversity and population structure in the X-linked region.
Results: Diversity is very low for all genes in the X-linked region in the wild dioecious population, with nucleotide diversity π = 0.00017, tenfold lower than the autosomal region (π = 0.0017) and 12-fold lower than the Y-linked region (π = 0.0021). Analysis of the X-linked sequences shows an undivided population, suggesting a geographically wide diversity-reducing event, whereas two subpopulations were observed in the autosomes separating gynodioecy and dioecy and three subpopulations in the Y-linked region separating three male populations. The extremely low diversity in the papaya X-linked region was probably caused by a recent, strong selective sweep before domestication, involving either the spread of a recessive mutation in an X-linked gene that is beneficial to males or a partially dominant mutation that benefitted females or both sexes. Nucleotide diversity in the domesticated X samples is about half that in the wild Xs, probably due to the bottleneck when hermaphrodites were selected during domestication.
Conclusions: The extreme low nucleotide diversity in the papaya X-linked region is much greater than observed in humans, great apes, and the neo-X chromosome of Drosophila miranda, which show the expected pattern of Y-linked genes < X-linked genes < autosomal genes; papaya shows an unprecedented pattern of X-linked genes < autosomal genes < Y-linked genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5125041 | PMC |
http://dx.doi.org/10.1186/s13059-016-1095-9 | DOI Listing |
Front Parasitol
December 2023
Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
Reticulocyte Binding Protein Homologue (RH5), a leading malaria vaccine candidate, is essential for erythrocyte invasion by the parasite, interacting with the human host receptor, basigin. RH5 has a small number of polymorphisms relative to other blood-stage antigens, and studies have shown that vaccine-induced antibodies raised against RH5 are strain-transcending, however most studies investigating RH5 diversity have been done in Africa. Understanding the genetic diversity and evolution of malaria antigens in other regions is important for their validation as vaccine candidates.
View Article and Find Full Text PDFHeliyon
July 2024
Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA.
The resistance () gene family in plants is a vital component of the plant defense system, enabling host resistance against pathogens through interactions with pathogen effector proteins. These R genes often encode nucleotide-binding (NB-ARC or N) and leucine-rich-repeat (LRR or L) domains, collectively forming the NLR protein family. The NLR proteins have been widely explored in crops from and , but limited studies are available for crops in other families, including .
View Article and Find Full Text PDFFront Antibiot
June 2024
Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India.
Microorganisms, crucial for environmental equilibrium, could be destructive, resulting in detrimental pathophysiology to the human host. Moreover, with the emergence of antibiotic resistance (ABR), the microbial communities pose the century's largest public health challenges in terms of effective treatment strategies. Furthermore, given the large diversity and number of known bacterial strains, describing treatment choices for infected patients using experimental methodologies is time-consuming.
View Article and Find Full Text PDFMycoses
January 2025
Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement Des Infections, CHU Henri Mondor, Assistance Publique Des Hôpitaux de Paris (APHP), Creteil, France.
Background: The airways of patients with cystic fibrosis (pwCF) harbour complex fungal and bacterial microbiota involved in pulmonary exacerbations (PEx) and requiring antimicrobial treatment. Descriptive studies analysing bacterial and fungal microbiota concomitantly are scarce, especially using both culture and high-throughput-sequencing (HTS).
Objectives: We analysed bacterial-fungal microbiota and inter-kingdom correlations in two French CF centres according to clinical parameters and antimicrobial choices.
J Zhejiang Univ Sci B
October 2024
Department of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
Adenosine triphosphate (ATP)-binding cassette (ABC) transporter systems are divided into importers and exporters that facilitate the movement of diverse substrate molecules across the lipid bilayer, against the concentration gradient. These transporters comprise two highly conserved nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Unlike ABC exporters, prokaryotic ABC importers require an additional substrate-binding protein (SBP) as a recognition site for specific substrate translocation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!