Oligodendrocytes and Schwann cells are the myelinating glia of the vertebrate nervous system and by generation of myelin sheaths allow rapid saltatory conduction. Previous in vitro work had pointed to a role of the zinc finger containing specificity proteins Sp1 and Sp3 as major regulators of glial differentiation and myelination. Here, we asked whether such a role is also evident in vivo using mice with specific deletions of Sp1 or Sp3 in myelinating glia. We also studied glia-specific conditional Sp2- and constitutive Sp4-deficient mice to include all related glutamine-rich Sp factors into our analysis. Surprisingly, we did not detect developmental Schwann cell abnormalities in any of the mutant mice. Oligodendrocyte development and differentiation was also not fundamentally affected as oligodendrocytes were present in all mouse mutants and retained their ability to differentiate and initiate myelin gene expression. The most severe defect we observed was a 50% reduction in Mbp- and proteolipid protein 1 (Plp1)-positive differentiating oligodendrocytes in Sp2 mutants at birth. Unexpectedly, glial development appeared undisturbed even in the joint absence of Sp1 and Sp3. We conclude that Sp2 has a minor effect on the differentiation of myelinating glia, and that glutamine-rich Sp proteins are not essential regulators of the process.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.13908DOI Listing

Publication Analysis

Top Keywords

myelinating glia
16
sp1 sp3
12
development differentiation
8
differentiation myelinating
8
sp2 glutamine-rich
4
glutamine-rich specificity
4
specificity protein
4
protein minor
4
minor impact
4
impact development
4

Similar Publications

Seipin Deficiency Impairs Motor Coordination in Mice by Compromising Spinal Cord Myelination.

Neuromolecular Med

January 2025

Department of Anatomy, School of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian Nan Road, Taiyuan, 030001, Shanxi, China.

The integrity of the myelin sheath of the spinal cord (SC) is essential for motor coordination. Seipin is an endoplasmic reticulum transmembrane protein highly expressed in adipose tissue and motor neurons in the SC. It was reported Seipin deficiency induced lipid dysregulation and neurobehavioral deficits, but the underlying mechanism, especially in SC, remains to be elucidated.

View Article and Find Full Text PDF

Aims: Alexander disease (AxD) is a leukodystrophy caused by mutations in the astrocytic filament gene GFAP. There are currently no effective treatments for AxD. Previous studies have rarely established AxD models with the patient's original GFAP mutations.

View Article and Find Full Text PDF

Background: Variants in the gene have been identified as a risk factor for late-onset Alzheimer's disease and are linked to decreased white matter integrity in healthy adults. However, the specific role for clusterin in myelin maintenance in the context of Alzheimer's disease remains unclear.

Methods: We employed a combination of immunofluorescence and transmission electron microscopy techniques, primary culture of OPCs, and an animal model of Alzheimer's disease.

View Article and Find Full Text PDF

Deletion and duplication in the human 16p11.2 chromosomal region are closely linked to neurodevelopmental disorders, specifically autism spectrum disorder. Data from neuroimaging studies suggest white matter microstructure aberrations across these conditions.

View Article and Find Full Text PDF

The Role of Neuroglia in the Development and Progression of Schizophrenia.

Biomolecules

December 2024

Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada.

Schizophrenia is a complex heterogenous disorder thought to be caused by interactions between genetic and environmental factors. The theories developed to explain the etiology of schizophrenia have focused largely on the dysfunction of neurotransmitters such as dopamine, serotonin and glutamate with their receptors, although research in the past several decades has indicated strongly that other factors are also involved and that the role of neuroglial cells in psychotic disorders including schizophrenia should be given more attention. Although glia were originally thought to be present in the brain only to support neurons in a physical, metabolic and nutritional capacity, it has become apparent that these cells have a variety of important physiological roles and that abnormalities in their function may make significant contributions to the symptoms of schizophrenia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!