Postural instability and gait disturbances, common disabilities in the elderly and frequently present in Parkinson's disease (PD), have been suggested to be related to dysfunctional cholinergic signaling in the brainstem. We investigated how long-term loss of cholinergic signaling from mesopontine nuclei influence motor behaviors. We selectively eliminated the vesicular acetylcholine transporter (VAChT) in pedunculopontine and laterodorsal tegmental nuclei cholinergic neurons to generate mice with selective mesopontine cholinergic deficiency (VAChT ). VAChT mice did not show any gross health or neuromuscular abnormality on metabolic cages, wire-hang and grip-force tests. Young VAChT mice (2-5 months-old) presented motor learning/coordination deficits on the rotarod; moved slower, and had smaller steps on the catwalk, but showed no difference in locomotor activity on the open field. Old VAChT mice (13-16 months-old) showed more pronounced motor learning/balance deficits on the rotarod, and more pronounced balance deficits on the catwalk. Furthermore, old mutants moved faster than controls, but with similar step length. Additionally, old VAChT-deficient mice were hyperactive. These results suggest that dysfunction of cholinergic neurons from mesopontine nuclei, which is commonly seen in PD, has causal roles in motor functions. Prevention of mesopontine cholinergic failure may help to prevent/improve postural instability and falls in PD patients. Read the Editorial Highlight for this article on page 688.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.13910DOI Listing

Publication Analysis

Top Keywords

vacht mice
12
vesicular acetylcholine
8
acetylcholine transporter
8
postural instability
8
cholinergic signaling
8
mesopontine nuclei
8
cholinergic neurons
8
mesopontine cholinergic
8
deficits rotarod
8
cholinergic
6

Similar Publications

Introduction/aims: VAChT-Cre is a transgenic mouse line targeting slow-twitch fatigue-resistant and fast-twitch fatigue-resistant motor neurons that innervate oxidative type I and type IIa muscle fibers. To ablate these neurons, VAChT-Cre mice were crossbred with NSE-DTA mice, leading to the expression of diphtheria toxin A after Cre-mediated excision. The resulting VAChT-Cre;NSE-DTA mice exhibited motor deficits, abnormal locomotion, muscular atrophy, and tremor, making them a useful model for studying motor neuron physiology and pathology.

View Article and Find Full Text PDF

Interstitial cells of Cajal (ICC) and PDGFRα cells regulate smooth muscle motility in the gastrointestinal (GI) tract, yet their function in the esophagus remains unknown. The mouse esophagus has been described as primarily skeletal muscle; however, ICC  have been identified in this region. This study characterizes the distribution of skeletal and smooth muscle cells (SMCs) and their spatial relationship to ICC, PDGFRα cells, and intramuscular motor neurons in the mouse esophagus.

View Article and Find Full Text PDF

Heterologous expressing melittin in a probiotic yeast to evaluate its function for promoting NSC-34 regeneration.

Appl Microbiol Biotechnol

October 2024

Department of Life Sciences, National Chung Hsing University, No. 145, Xing-Da Road, South District, Taichung City, 40227, Taiwan, ROC.

Melittin is a bioactive peptide and the predominant component in bee venom (BV), studied for its many medical properties, such as antibacterial, anti-inflammatory, anti-arthritis, nerve damage reduction, and muscle cell regeneration. Melittin is primarily obtained through natural extraction and chemical synthesis; however, both methods have limitations and cannot be used for mass production. This study established a heterologous melittin expression system in the probiotic yeast Kluyveromyces marxianus.

View Article and Find Full Text PDF

Cortical cholinergic projections originate from subregions of the basal forebrain (BF). To examine its organization in humans, we computed multimodal gradients of BF connectivity by combining 7 T diffusion and resting state functional MRI. Moving from anteromedial to posterolateral BF, we observe reduced tethering between structural and functional connectivity gradients, with the lowest tethering in the nucleus basalis of Meynert.

View Article and Find Full Text PDF

Influence of β-adrenergic selective agonist formoterol on the motor unit of a mouse model of a congenital myasthenic syndrome with complete VAChT deletion.

Neuropharmacology

December 2024

Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil. Electronic address:

Congenital Myasthenic Syndromes (CMS) are a set of genetic diseases that affect the neuromuscular transmission causing muscular weakness. The standard pharmacological treatment aims at ameliorating the myasthenic symptom by acetylcholinesterase inhibitors. Most patients respond well in the short and medium term, however, over time the beneficial effects rapidly fade, and the efficacy of the treatment diminishes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!