Background/aims: Sonodynamic therapy (SDT) is a localized ultrasound-activated therapy for atherosclerosis when combined with a sonosensitizer, 5-aminolevulinic acid (ALA), but whether it can prevent cardiac fibrosis has not been studied. In the present study, we evaluated the effects SDT on fibrogenesis in rat cardiac fibroblasts.

Methods: The primary cardiac fibroblasts were isolated from rats, and induced to fibrogenesis with TGF-β1. With this in vitro model, we tested the preventive effects of SDT on fibrogenesis and further the underlying mechanism.

Results: TGF-β1 stimulation up-regulated α-SMA and COLI/III protein levels in cardiac fibroblasts, and enhanced the progression of cells from the G0/G1 phase to the S phase. SDT inhibited the TGF-β1 mediated cell proliferation and decreased the levels of α-SMA and COLI/III by activating AKT/GSK3β pathway and blocking TGF-β1/SMAD3 signaling.

Conclusion: Our studies demonstrate an antifibrotic effect of SDT in rat cardiac fibroblasts, suggesting that SDT may intervene cardiac fibrogenesis by regulating myocardial fibrotic remodeling.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000452571DOI Listing

Publication Analysis

Top Keywords

cardiac fibroblasts
16
rat cardiac
12
sonodynamic therapy
8
fibrogenesis rat
8
effects sdt
8
sdt fibrogenesis
8
α-sma coli/iii
8
cardiac
7
sdt
6
fibrogenesis
5

Similar Publications

Mid-infrared photoacoustic microscopy can capture biochemical information without staining. However, the long mid-infrared optical wavelengths make the spatial resolution of photoacoustic microscopy significantly poorer than that of conventional confocal fluorescence microscopy. Here, we demonstrate an explainable deep learning-based unsupervised inter-domain transformation of low-resolution unlabeled mid-infrared photoacoustic microscopy images into confocal-like virtually fluorescence-stained high-resolution images.

View Article and Find Full Text PDF

Somatic cells can be reprogrammed into pluripotent stem cells (iPSCs) by overexpressing defined transcription factors. Specifically, overexpression of OCT4 alone has been demonstrated to reprogram mouse fibroblasts into iPSCs. However, it remains unclear whether any other single factor can induce iPSCs formation.

View Article and Find Full Text PDF

Objective: Macrophages perform vital functions in cardiac remodeling after myocardial infarction (MI). Transglutaminase 2 (TG2) participates in fibrosis. Nevertheless, the role of TG2 in MI and mechanisms underlying macrophage polarization are unclear.

View Article and Find Full Text PDF

Decoding aging in the heart via single cell dual omics of non-cardiomyocytes.

iScience

December 2024

Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.

To understand heart aging at the single-cell level, we employed single-cell dual omics (scRNA-seq and scATAC-seq) in profiling non-myocytes (non-CMs) from young, middle-aged, and elderly mice. Non-CMs, vital in heart development, physiology, and pathology, are understudied compared to cardiomyocytes. Our analysis revealed aging response heterogeneity and its dynamics over time.

View Article and Find Full Text PDF

Background: Human interleukin (IL)-37 is a constituent of the IL-1 family with potent anti-inflammatory and immunosuppressive attributes. It has been demonstrated extensive beneficial effects on various diseases; however, its role in the pathogenesis of diabetic cardiomyopathy (DCM) remains unclear.

Methods: , DCM mouse model was established with streptozotocin injection and a high-fat diet in WT and cardiac fibroblasts (CFs) specific hIL-37b overexpression mice (IL-37-Tg).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!