The present work describes the photophysical properties of two newly synthesized compounds, namely (E)-10-butyl-3-(2-(thiazolo[4,5-b]quinoxalin-2-yl)vinyl)-10H-phenothiazine (PTQ) and (E)-10-butyl-3-(2-(1,1-dimethyl-1H-benzo[e]indol-2-yl)vinyl)-10H-phenothiazine (PBI). A strong intramolecular charge transfer (ICT) is observed in both dyes as indicated from absorption and emission studies on varying the solvent polarity. This can be concluded from the large Stokes shifts among these dyes as PTQ exhibits large Stokes shift with >270nm and PBI around 200nm. The effect of increasing polarity caused drastic increase in the charge transfer process leading to twisted intramolecular charge transfer (TICT) process in both the dyes PTQ and PBI. Time-resolved emission studies and non-radiative decay rate constant indicates that the excited states of both dyes behave differently with respect to solvent polarity. The non-radiative decay constant increases dramatically with the solvent polarity specifying change of ICT emissive states in non-polar solvent while TICT emitting states in highly polar solvent. On the other hand, PBI follows a general trend initially exhibiting higher non-radiative decay constant in non-polar solvent like cyclohexane, lowest in moderate polarity owing to the ICT emissive state but with increase in the polarity, the non-radiative decay constant again increases indicating TICT states.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2016.10.045DOI Listing

Publication Analysis

Top Keywords

non-radiative decay
16
charge transfer
12
solvent polarity
12
decay constant
12
intramolecular charge
8
emission studies
8
large stokes
8
dyes ptq
8
polarity non-radiative
8
constant increases
8

Similar Publications

Hypochlorous acid(HClO)/hypochlorite ion (ClO-) is a highly reactive oxygen species (ROS) that play a crucial role in various biological processes. In this paper, a "turn-on" phosphorescent probe (Ir-TPP) for detecting ClO- in mitochondria was designed and synthesized. In solution, Ir-TPP is minimal emission due to rapid isomerization of C=N-OH as an efficient non-radiative decay process.

View Article and Find Full Text PDF

Infectious bacteria pose an increasing threat to public health, and hospital-acquired bacterial infections remain a significant challenge for wound healing. In this study, we developed an advanced nanoplatform utilizing copper doped magnetic vortex nanoring coated with polydopamine (Cu-MVNp) based nanotherapeutics for bacterial infection tri-therapy. This multifunctional nanoplatform exhibits remarkable dual-stimulus thermogenic capabilities and Fenton-like peroxidase activity.

View Article and Find Full Text PDF

Lattice Modulation on Singlet-Triplet Splitting of Silver Cluster Boosting Near-Unity Photoluminescence Quantum Yield.

Angew Chem Int Ed Engl

December 2024

Shandong University, Department of Chemistry and Chemical Engineering, Shanda South Road 27, 250100, Jinan, CHINA.

Developing thermally activated delayed fluorescence (TADF)-active silver clusters with near-unity quantum efficiency is of practical importance in cutting-edge optoelectronic devices, but remains a tremendous challenge due to the difficulty of de novo synthesis and uncertainty of properties. Herein, we demonstrate a lattice modulation on parent TADF-activate silver cluster, acheving TADF-driven photoluminescence quantum yield (PLQY) from 12% to near-unity. Systematic experimental and calculated results reveal that the lattice modulation effectively lower the singlet-triplet splitting (ΔEST) from 718 to 549 cm-1, thereby facilitating thermally activated reverse intersystem crossing: T5→S5, leading to extremely efficient TADF by surpassing both phosphorescence and non-radiative decay, thus boosting the near-unity PLQY.

View Article and Find Full Text PDF

Enabling High-Performance Multi-Resonant TADF Emitters via Intramolecular Hydrogen Bond.

Chemistry

December 2024

Hebei Key Laboratory of Organic Functional Molecules, Hebei Technology Innovation Center for Energy Conversion Materials and Devices, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, PR China E-mail address.

Hydrogen bonds (HBs), prevalent strong interactions in organic compounds, can effectively constrain single bond rotation, leading to rigid planar configurations. This rigidity enhances emission efficiency and narrows the emission spectrum of luminescent materials. Recent advances have leveraged HBs to advance high-performance donor-acceptor thermally activated delayed fluorescence (TADF) materials.

View Article and Find Full Text PDF

Ultrasensitive NIR-II Surface-Enhanced Resonance Raman Scattering Nanoprobes with Nonlinear Photothermal Effect for Optimized Phototheranostics.

Small

November 2024

CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.

Surface-enhanced resonance Raman scattering (SERRS) in the second near-infrared (NIR-II) window has great potential for improved phototheranostics, but lacks nonfluorescent, resonant and high-affinity Raman dyes. Herein, it is designed and synthesize a multi-sulfur Raman reporter, NF1064, whose maximum absorption of 1064 nm rigidly resonates with NIR-II excitation laser while possessing absolutely nonfluorescent backgrounds. Ultrafast spectroscopy suggests that the fluorescence quenching mechanism of NF1064 originates from twisted intramolecular charge transfer (TICT) in the excited state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!