Evaluation of fertilizer-drawn forward osmosis for sustainable agriculture and water reuse in arid regions.

J Environ Manage

School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), City Campus, Broadway, NSW 2007, Australia. Electronic address:

Published: February 2017

The present study focused on the performance of the FDFO process to achieve simultaneous water reuse from wastewater and production of nutrient solution for hydroponic application. Bio-methane potential (BMP) measurements were firstly carried out to determine the effect of osmotic concentration of wastewater achieved in the FDFO process on the anaerobic activity. Results showed that 95% water recovery from the FDFO process is the optimum value for further AnMBR treatment. Nine different fertilizers were then tested based on their FO performance (i.e. water flux, water recovery and reverse salt flux) and final nutrient concentration. From this initial screening, ammonium phosphate monobasic (MAP), ammonium sulfate (SOA) and mono-potassium phosphate were selected for long term experiments to investigate the maximum water recovery achievable. After the experiments, hydraulic membrane cleaning was performed to assess the water flux recovery. SOA showed the highest water recovery rate, up to 76% while KHPO showed the highest water flux recovery, up to 75% and finally MAP showed the lowest final nutrient concentration. However, substantial dilution was still necessary to comply with the standards for fertigation even if the recovery rate was increased.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2016.11.021DOI Listing

Publication Analysis

Top Keywords

water recovery
16
fdfo process
12
water flux
12
water
9
water reuse
8
final nutrient
8
nutrient concentration
8
flux recovery
8
highest water
8
recovery rate
8

Similar Publications

Background: The gradual extrusion of water-soluble intracellular components (such as proteins) from microalgae after pulsed electric field (PEF) treatment is a well-documented phenomenon. This could be utilized in biorefinery applications with lipid extraction taking place after such an 'incubation' period, i.e.

View Article and Find Full Text PDF

Highly efficient recovery of cobalt-ion containing waste deep eutectic electrolytes: a sustainable solvent extraction approach.

ChemSusChem

January 2025

Kunming University of Science and Technology, Faculty of Metallurgical and Energy Engineering, No. 68 Wenchang Road, 121 Street, 650093, Kunming, CHINA.

Efficient recovery of metals from secondary resources is essential to address resource shortages and environmental crises. The development of a cheap, environmentally friendly, and highly efficient recovery pathway is essential for resource retrieval. In this study, we propose a high-efficiency extraction approach utilizing bis(2,4,4-trimethylpentyl) phosphonic acid (Cyanex272) to recover cobalt from waste choline chloride/ethylene glycol (Ethaline) electrolyte containing Co(II) ions.

View Article and Find Full Text PDF

As bacterial contamination crises escalate, the development of advanced membranes possessing both high flux and antibacterial properties is of paramount significance for enhancing water sterilization efficiency. Herein, an ultrathin layer of TbPa (an imine-linked covalent organic framework) and nanosized CuO clusters, sequentially deposited onto polyethersulfone membranes, demonstrate exceptional water flux performance, reaching a permeance level of 16000 LHM bar. The deposited TbPa, generating uniformly distributed reduction sites under illumination, facilitates the uniform formation of CuO clusters.

View Article and Find Full Text PDF

Nitrate induced hepatic fibrosis in tadpoles of Bufo gargarizans by mediating alterations in toll-like receptor signaling pathways.

Environ Res

January 2025

Life and Environmental Science College, Wenzhou University, 325003, Wenzhou, China; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, 325003, Wenzhou, China. Electronic address:

The nitrate pollution has become an increasingly serious environmental problem worldwide, and the toxic effects of elevated nitrate levels in the environment on aquatic animals remain to be elucidated. The purpose of the present study was to investigate the mechanisms of liver injury to tadpoles after exposure to nitrate from embryonic to metamorphic climax and to assess the recovery process of liver function after cessation of exposure. In the group with continuous nitrate exposure, the livers and thyroid of tadpoles showed remarkably histological lesions, of this with structural disorganization of the hepatocytes, cellular atrophy, and fibrosis, as well as significant reduction in the follicular and colloidal area of the thyroid.

View Article and Find Full Text PDF

The inhibition of anammox system under Cu stress and mechanisms of biochar-mediated recovery.

J Hazard Mater

January 2025

School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China. Electronic address:

Copper (Cu)-containing wastewater has proven difficult to effectively treat using the anammox process. In this study, the nitrogen removal efficiency (NRE), sludge characteristics, microbial community and recovery mechanisms of biochar-mediated anammox under Cu stress were elucidated. At a Custress of 5 mg/L, a 73.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!