Redox control of senescence and age-related disease.

Redox Biol

SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, Albany, NY 12203, USA. Electronic address:

Published: April 2017

The signaling networks that drive the aging process, associated functional deterioration, and pathologies has captured the scientific community's attention for decades. While many theories exist to explain the aging process, the production of reactive oxygen species (ROS) provides a signaling link between engagement of cellular senescence and several age-associated pathologies. Cellular senescence has evolved to restrict tumor progression but the accompanying senescence-associated secretory phenotype (SASP) promotes pathogenic pathways. Here, we review known biological theories of aging and how ROS mechanistically control senescence and the aging process. We also describe the redox-regulated signaling networks controlling the SASP and its important role in driving age-related diseases. Finally, we discuss progress in designing therapeutic strategies that manipulate the cellular redox environment to restrict age-associated pathology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5126126PMC
http://dx.doi.org/10.1016/j.redox.2016.11.005DOI Listing

Publication Analysis

Top Keywords

aging process
12
control senescence
8
signaling networks
8
cellular senescence
8
redox control
4
senescence
4
senescence age-related
4
age-related disease
4
disease signaling
4
networks drive
4

Similar Publications

Skin wrinkles result from a myriad of multifaceted processes involving intrinsic and extrinsic aging. To combat this effect, plant stem cells offer a renewable and eco-friendly source for various industries, including cosmeceuticals. (SM), which contains the bioactive compound Rosmarinic acid (RA) and has been proposed for its anti-wrinkle effect.

View Article and Find Full Text PDF

Current Positron Studies on the Modifications of the Molecular Packing in Green-Based Polymers Through Changes in the Synthesis Procedures or Environmental Conditions.

Polymers (Basel)

December 2024

Positron Group "Prof. Alfredo Dupasquier", Faculty of Exact Sciences, Tandil Institute of Materials Physics (IFIMAT), National University of the Center of the Buenos Aires Province (UNCPBA), Pinto 399, 7000 Tandil, Argentina.

The sensitivity of positron annihilation characteristics to changes in the molecular packing in network-forming polymers has been demonstrated since the early 1980s. Positron annihilation lifetime spectroscopy (PALS) is a unique technique that can provide direct information on the free volume in polymers through the experimental parameters of the free volume hole distribution, their mean value, and volume fraction. This knowledge is currently applied for PALS investigations on the main processes that govern the molecular organization in some green polymers when subjected to different synthesis procedures or environmental conditions (humidity, physical aging, temperature).

View Article and Find Full Text PDF

The scope of this work was to develop a thin-film composite (TFC) membrane for the separation of CO/CO mixtures, which are relevant for many processes of gas processing and gasification of carbon-based feedstock. Special attention was given to the development of highly permeable porous polysulfone (PSF) supports (more than 26,000 GPU for CO) since both the selective and support layers contribute significantly to the overall performance of the TFC membrane. The PSF porous support is widely used in commercial and lab-scale TFC membranes, and its porous structure and other exploitation parameters are set during the non-solvent-induced phase separation (NIPS) process.

View Article and Find Full Text PDF

Dietary Restriction and Lipid Metabolism: Unveiling Pathways to Extended Healthspan.

Nutrients

December 2024

Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.

Dietary restriction (DR) has been reported to be a significant intervention that influences lipid metabolism and potentially modulates the aging process in a wide range of organisms. Lipid metabolism plays a pivotal role in the regulation of aging and longevity. In this review, we summarize studies on the significant role of lipid metabolism in aging in relation to DR.

View Article and Find Full Text PDF

The Protective Role of Vitamin K in Aging and Age-Related Diseases.

Nutrients

December 2024

DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland.

Aging is an inevitable aspect of life, but age-related diseases are not an inseparable part of the aging process, and their risk can be reduced through a healthy lifestyle. Vitamin K has a broader impact than just blood clotting, and yet it remains overshadowed by other vitamins and underestimated by both doctors and consumers. Vitamin K (VK) is a multifunctional micronutrient with anti-inflammatory and antioxidant properties, whose deficiency may cause age-related diseases such as cardiovascular diseases, neurodegenerative diseases and osteoporosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!