Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dexamethasone is one of the most prescribed glucocorticoids. It is effective and safe in the treatment of a wide variety of ocular conditions, including anterior and posterior segment inflammation. However, its half-life in the vitreous humor is very short, which means that it typically requires frequent administrations, thus reducing patient adherence and causing therapeutic failure. Innovative dexamethasone delivery systems have been designed in an attempt to achieve sustained release and targeting. The FDA has approved dexamethasone implants for the treatment of macular edema secondary to retinal vein occlusion and posterior segment noninfectious uveitis. Lenses, micro- and nanoparticles, liposomes, micelles and dendrimers are also proving to be adequate systems for maintaining optimal dexamethasone levels in the site of action. Pharmaceutical technology is turning a classical drug, dexamethasone, into a fashionable medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2016.11.053 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!