Proteomic analysis provides insights into changes in the central metabolism of the cambium during dormancy release in poplar.

J Plant Physiol

State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China. Electronic address:

Published: January 2017

Seasonal cycling of growth and dormancy is an important feature for the woody plants growing in temperate zone, and dormancy is an effective strategy for surviving the winter stress. But the mechanisms of dormancy maintenance and its release are still not clear, especially little information is available with regard to the changes of proteome during the process. A better understanding in the function of proteins and their related metabolic pathways would expand our knowledge of the mechanisms of dormancy maintenance and its release in trees. In this study, we employed the isobaric tags for relative and absolute quantification (iTRAQ) approach with LC-MS/MS analysis to investigate the protein profile changes during dormancy release in poplar. In addition, the change of lipid, total insoluble carbohydrates and starch granules in the cambium was investigated by histochemical methods. A total of 3789 proteins were identified in poplar cambial tissues, 1996 of them were significantly altered during the dormancy release. Most of the altered proteins involved in signaling, phytohormone, energy metabolism, stress and secondary metabolism by functional analysis. Our data shows that the lipid metabolism proteins changed significantly both in the release stage of eco- and endodormancy, while the changes of carbohydrate metabolism proteins were mainly in endo-dormancy release stage. Moreover, histochemical results were consistent with the proteomic data. Our results reveal diverse stage-specific metabolism changes during the dormancy-release process induced by chilling in poplar, which provided new information regarding the regulation mechanisms of dormancy maintenance and its release in trees.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2016.10.007DOI Listing

Publication Analysis

Top Keywords

dormancy release
12
mechanisms dormancy
12
dormancy maintenance
12
maintenance release
12
dormancy
8
release
8
release poplar
8
release trees
8
metabolism proteins
8
release stage
8

Similar Publications

During the dormant period of peach trees in winter, flower buds exhibit weak cold resistance and are susceptible to freezing at low temperatures. Understanding the physiological and molecular mechanisms underlying the response of local peach buds to low-temperature adversity is crucial for ensuring normal flowering, fruiting, and yield. In this study, the experimental materials included the conventional cultivar 'Xia cui' (XC) and the cold-resistant local resources 'Ding jiaba' (DJB) peach buds.

View Article and Find Full Text PDF

Background And Aims: Fire-released seed dormancy (SD) is a key trait for successful germination and plant persistence in many fire-prone ecosystems. Many local studies have shown that fire-released SD depends on heat and exposure time, dose of smoke-derived compounds, SD class, plant lineage and the fire regime. However, a global quantitative analysis of fire-released SD is lacking.

View Article and Find Full Text PDF

Bone is a common and debilitating site for metastatic cancer cell expansion. Skeletal metastasis is a multistage process, with primary stages of circulating tumour cells, progressing to a dormant state in vasculature and bone marrow niches, followed by tumorigenic reactivation, proliferation, and finally bone destruction. The frequency of bone metastasis is reconciled in Paget's "seed and soil" hypothesis, where a conducive microenvironment (bone niche) is essential for cancer cell colonisation.

View Article and Find Full Text PDF

Background: Seed dormancy is a critical evolutionary trait that enhances the persistence of plant populations under both natural and managed conditions. It is influenced by genetic and environmental factors, with crop management practices like tillage and herbicide use reportedly selecting for increased seed dormancy in weeds. This study aimed to compare the success of seed dormancy breaking methods between weed populations collected from intensively managed crop fields and unmanaged ruderal locations.

View Article and Find Full Text PDF

Hydrological transport and endosperm weakening mechanisms during dormancy release in Tilia henryana seeds.

J Plant Physiol

December 2024

College of Forestry, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing, Jiangsu, 210037, PR China; Co-innovation Center for Sustainable Forestry in Southern China, Southern Tree Inspection Center National Forestry Administration, 159 Longpan Road, Xuanwu District, Nanjing, Jiangsu, 210037, PR China. Electronic address:

Seed germination is a pivotal stage in the plant life cycle, with endosperm weakening and radicle elongation serving as crucial prerequisites for successful endospermic seed germination. Tilia henryana seeds exhibit deep dormancy, necessitating a period of 2-3 years to germinate in a natural environment, and the germination rate is extremely low. This study employed morphological and physiological approaches to dynamically analyzing the hydrological mechanism and the endosperm weakening process during the dormancy release of T.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!