A Marble in the Heart.

JACC Cardiovasc Interv

Cardiology Department, La Paz University Hospital, Madrid, Spain.

Published: December 2016

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcin.2016.09.025DOI Listing

Publication Analysis

Top Keywords

marble heart
4
marble
1

Similar Publications

Mammalian genomes contain millions of regulatory elements that control the complex patterns of gene expression. Previously, The ENCODE consortium mapped biochemical signals across many cell types and tissues and integrated these data to develop a Registry of 0.9 million human and 300 thousand mouse candidate cis-Regulatory Elements (cCREs) annotated with potential functions.

View Article and Find Full Text PDF

Lethal COVID-19 outcomes are attributed to classic cytokine storm. We revisit this using RNA sequencing of nasopharyngeal and 40 autopsy samples from patients dying of SARS-CoV-2. Subsets of the 100 top-upregulated genes in nasal swabs are upregulated in the heart, lung, kidney, and liver, but not mediastinal lymph nodes.

View Article and Find Full Text PDF

Microgravity exposure induces a cephalad fluid shift and an overall reduction in physical activity levels which can lead to cardiovascular deconditioning in the absence of countermeasures. Future spaceflight missions will expose crew to extended periods of microgravity among other stressors, the effects of which on cardiovascular health are not fully known. In this study, we determined cardiac responses to extended microgravity exposure using the rat hindlimb unloading (HU) model.

View Article and Find Full Text PDF

Transcriptomics analysis reveals molecular alterations underpinning spaceflight dermatology.

Commun Med (Lond)

June 2024

Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett field, CA, USA.

Article Synopsis
  • Spaceflight presents unique health risks for astronauts, particularly regarding skin health, which are not yet fully understood.
  • A comprehensive analysis using various biological datasets revealed significant changes in skin-related biological processes during spaceflight, including DNA damage and mitochondrial issues.
  • The study's results emphasize the potential for developing strategies to reduce skin damage from space travel and highlight the body's ability to adapt back to Earth's conditions after missions.
View Article and Find Full Text PDF

Human space exploration poses inherent risks to astronauts' health, leading to molecular changes that can significantly impact their well-being. These alterations encompass genomic instability, mitochondrial dysfunction, increased inflammation, homeostatic dysregulation, and various epigenomic changes. Remarkably, these changes bear similarities to those observed during the aging process on Earth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!