A composite of Typha latifolia activated carbon (TLAC) (a novel, low cost absorbent) and chitosan (TLAC/Chitosan composite) was prepared. The composite was characterised using IR spectra, XRD, FESEM and Pore size studies. Its effectivity was tested for the removal of crystal violet dye from aqueous solutions. The effect of pH, dose rate and initial dye concentration was evaluated. The adsorption isotherm, kinetics and thermodynamic parameters were studied. Langmuir and Freundlich isotherm models were found fit effectively for the dye adsorption data in the present study. The adsorption followed pseudo-second order kinetics. The evaluated thermodynamic parameters show a spontaneous and exothermic reaction. Overall, this study indicates TLAC/Chitosan composite as an effective adsorbent for the removal of crystal violet dye from aqueous solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2016.11.077 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, P.O. Box 19839-69411, Tehran, Iran. Electronic address:
The increasing prevalence of micropollutants like cationic and anionic dyes in wastewater creates an influential environmental challenge, mainly due to their toxic effects and persistence. Current methods often lack the efficiency and versatility to cope with a wide variety of contaminants. This study explores the modification of TEMPO-oxidized cellulose nanofibers (TOCNF) using (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHPTAC) to enhance their cationic properties.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China. Electronic address:
Nitrate pollution poses severe risks to aquatic ecosystems and human health. The electrocatalytic nitrate reduction reaction (NITRR) offers a promising environmental and economic solution for nitrate pollution treatment and nitrogen source recovery; however, it continues to experience limited efficiency in neutral electrolytes. This study explores the heterointerface activation effects of TiO/CuO heterogeneous catalysts with rutile (R-TiO) and anatase (A-TiO) phases and reveals that R-TiO is an active crystal phase with high nitrate reduction performance.
View Article and Find Full Text PDFLangmuir
January 2025
School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, MH 416004, India.
In this study, we report the modification of a monolithic γ-aluminum oxy-hydroxide (γ-AlOOH) aerogel with cellulose nanofibers (CNFs) using the sol-gel method via supercritical drying. The optimized 2% CNF (w/w) results in a monolithic CNF-γ-AlOOH that is amorphous in nature, along with C-C and C-O-C functional groups. Transmission electron microscopy (TEM) images of the as-synthesized CNF-γ-AlOOH showed CNF embedded in the γ-AlOOH aerogel.
View Article and Find Full Text PDFChem Asian J
January 2025
Fudan University, Department of Environmental Science and Engineering, Shanghai Handan Road 220, 200433, Shanghai, CHINA.
Novel Ce1-xMnxVO4 catalysts prepared via modified hydrothermal synthesis were used in selective catalytic reduction of NO using NH3 (NH3-SCR). The Ce1-xMnxVO4 catalysts displayed optimum NO removal efficiency at 250 oC. Physicochemical properties including crystal type, morphology, particle size, elemental composition, BET surface area, chemical bond, and valence state were studied by XRD, TEM, EDS, N2 adsorption-desorption, Raman spectroscopy, and XPS.
View Article and Find Full Text PDFAME Case Rep
November 2024
Department of Urology, São José do Rio Preto Regional Faculty of Medicine Foundation (FUNFARME), São José do Rio Preto, SP, Brazil.
Background: Urolithiasis (kidney stone) is a common condition that often leads patients to urgent or emergency care services. Urinary calculi are generally found in the kidneys, ureters, or bladder. Urethral calculi are uncommon and can result from the migration of a calculus in the upper urinary tract or vesicle or may be primary of the urethra.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!