The recent development of tissue engineering provides exciting new perspectives for the replacement of failing organs and the repair of damaged tissues. Perivascular cells, including vascular smooth muscle cells, pericytes and other tissue specific populations residing around blood vessels, have been isolated from many organs and are known to participate to the in situ repair process and angiogenesis. Their potential has been harnessed for cell therapy of numerous pathologies; however, in this Review we will discuss the potential of perivascular cells in the development of tissue engineering solutions for healthcare. We will examine their application in the engineering of vascular grafts, cardiac patches and bone substitutes as well as other tissue engineering applications and we will focus on their extensive use in the vascularization of engineered constructs. Additionally, we will discuss the emerging potential of human pericytes for the development of efficient, vascularized and non-immunogenic engineered constructs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5345698 | PMC |
http://dx.doi.org/10.1016/j.pharmthera.2016.11.002 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States.
Mechanical properties of engineered connective tissues are critical for their success, yet modern sensors that measure physical qualities of tissues for quality control are invasive and destructive. The goal of this work was to develop a noncontact, nondestructive method to measure mechanical attributes of engineered skin substitutes during production without disturbing the sterile culture packaging. We optimized a digital holographic vibrometry (DHV) system to measure the mechanical behavior of Apligraf living cellular skin substitute through the clear packaging in multiple conditions: resting on solid agar as when the tissue is shipped, on liquid media in which it is grown, and freely suspended in air as occurs when the media is removed for feeding.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, No. 58, Yuelu District, Changsha, 410006, Hunan, China.
Objective: Rosmarinic acid (RosA) is a natural polyphenol compound that has been shown to be effective in the treatment of inflammatory disease and a variety of malignant tumors. However, its specific mechanism for the treatment of lung adenocarcinoma (LUAD) has not been fully elucidated. Therefore, this study aims to clarify the mechanism of RosA in the treatment of LUAD by integrating bioinformatics, network pharmacology and in vivo experiments, and to explore the potential of the active ingredients of traditional Chinese medicine in treating LUAD.
View Article and Find Full Text PDFJ Neurol
January 2025
NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, Faculty of Brain Sciences, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
Cognitive impairment (CI) in multiple sclerosis (MS) is only partially explained by whole-brain volume measures, but independent component analysis (ICA) can extract regional patterns of damage in grey matter (GM) or white matter (WM) that have proven more closely associated with CI. Pathology in GM and WM occurs in parallel, and so patterns can span both. This study assessed whether joint-ICA of GM and WM features better explained cognitive function compared to single-tissue ICA.
View Article and Find Full Text PDFJ Mater Sci Mater Med
January 2025
Department of Hand and Foot Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China.
Diseases and injuries can cause significant bone loss, leading to increased medical expenses, decreased work efficiency, and a decline in quality of life. Bone tissue engineering (BTE) is gaining attention as an alternative to autologous and allogeneic transplantation due to the limited availability of donors. Biomaterials represent a promising strategy for bone regeneration, and their design should consider the three key processes in bone tissue engineering: osteogenesis, bone conduction, and bone induction.
View Article and Find Full Text PDFFood Funct
January 2025
College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
Low molecular weight galactomannan (LMGM), a soluble dietary fibre derived from guar gum, is recognized for its prebiotic functions, including promoting the growth of beneficial intestinal bacteria and the production of short-chain fatty acids, but the mechanism of alleviating diarrhea is not fully understood. This study established an acute diarrhea mouse model using senna leaf decoction and evaluated the therapeutic effects of LMGM by monitoring diarrhea scores, loose stool prevalence, intestinal tissue pathology and gene expression, and gut microbiota composition and metabolisms. The results indicated that LMGM significantly reduced diarrhea scores and loose stool prevalence within two hours post-treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!