Developmental neuronal cell death and axonal elimination are controlled by transcriptional programs, of which their nature and the function of their components remain elusive. Here, we identified the dual specificity phosphatase Dusp16 as part of trophic deprivation-induced transcriptome in sensory neurons. Ablation of Dusp16 enhanced axonal degeneration in response to trophic withdrawal, suggesting that it has a protective function. Moreover, axonal skin innervation was severely reduced while neuronal elimination was increased in the Dusp16 knockout. Mechanistically, Dusp16 negatively regulates the transcription factor p53 and antagonizes the expression of the pro-degenerative factor, Puma (p53 upregulated modulator of apoptosis). Co-ablation of Puma with Dusp16 protected axons from rapid degeneration and specifically reversed axonal innervation loss early in development with no effect on neuronal deficits. Overall, these results reveal that physiological axonal elimination is regulated by a transcriptional program that integrates regressive and progressive elements and identify Dusp16 as a new axonal preserving factor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2016.10.061DOI Listing

Publication Analysis

Top Keywords

axonal degeneration
8
regulated transcriptional
8
transcriptional program
8
axonal elimination
8
axonal
7
dusp16
6
degeneration regulated
4
program coordinates
4
coordinates expression
4
expression pro-
4

Similar Publications

Article Synopsis
  • About 20% of familial ALS cases are linked to mutations in the SOD1 gene, and traumatic brain injury (TBI) is identified as a possible risk factor.
  • Researchers studied the effects of repetitive TBI on ALS progression in SOD1 mouse models and the role of Sarm1, a regulator of axonal degeneration.
  • Results showed that TBI worsened ALS symptoms and disease progression, but losing Sarm1 helped improve outcomes and reduced nerve damage, indicating potential for SARM1-targeted treatments.
View Article and Find Full Text PDF

An apparent outbreak of fenugreek forage toxicosis occurred in a beef cattle herd near Moose Jaw, Saskatchewan in February-May 2022. The herd had consumed fenugreek hay from late fall to early winter. Clinical signs included various degrees of weakness, ataxia, knuckling, walking on hocks, and recumbency.

View Article and Find Full Text PDF

This study characterizes a fluorescent -tdTomato neuronal reporter mouse line with strong labeling of axons throughout the optic nerve, of retinal ganglion cell (RGC) soma in the ganglion cell layer (GCL), and of RGC dendrites in the inner plexiform layer (IPL). The model facilitated assessment of RGC loss in models of degeneration and of RGC detection in mixed neural/glial cultures. The tdTomato signal showed strong overlap with >98% cells immunolabeled with RGC markers RBPMS or BRN3A, consistent with the ubiquitous presence of the vesicular glutamate transporter 2 (VGUT2, SLC17A6) in all RGC subtypes.

View Article and Find Full Text PDF

Autonomic Component of Carpal Tunnel Syndrome.

J Hand Surg Am

January 2025

Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.

Carpal tunnel syndrome (CTS) is the most common compression neuropathy. The median nerve contains sensory, motor, and sympathetic fibers. Involvement of the different fibers of the median nerve in CTS may vary; hence, one of the sensory, motor, or autonomic dysfunctions may be dominant.

View Article and Find Full Text PDF

Traumatic optic neuropathy (TON) has been regarded a vision-threatening condition caused by either ocular or blunt/penetrating head trauma, which is characterized by direct or indirect TON. Injury happens during sports, vehicle accidents and mainly in military war and combat exposure. Earlier, we have demonstrated that remote ischemic post-conditioning (RIC) therapy is protective in TON, and here we report that AMPKα1 activation is crucial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!