Volatile per- and polyfluoroalkyl substances (PFASs) are often used as precursors in the synthesis of nonvolatile PFASs. The volatile PFASs, which include the perfluoroalkyl iodides (PFAIs), fluorotelomer iodides (FTIs), fluorotelomer alcohols (FTOHs), fluorotelomer olefins (FTOs), fluorotelomer acrylates (FTACs), and fluorotelomer methacrylates (FTMACs), are often produced starting from the telomerization process. These volatile compounds can be present in the air and water environment and can be transformed into highly persistent perfluoroalkyl carboxylic acids. With the exception of FTOHs, which are well studied, the determination of other volatile PFASs is also of prime importance in studying the sources and fate of PFASs. In this study, a method was developed to determine representative precursor compounds that included PFAIs, FTIs, FTOs, FTACs, and FTMACs in wastewater treatment plant (WWTP) air and water samples. The sampling and sample preparation step involved the use of solid-phase extraction (SPE) cartridges with HLB™ material to enrich the analyte. Gas chromatography with mass spectrometry was employed for the detection and quantification of the analytes. Method validation results showed high linearity and sensitivity in the positive electron ionization-selected ion monitoring mode (+EI-SIM). The absolute instrumental limits of detection were in the range of 0.5 to 2 pg. The method detection limit (MDL) in air was 1 ng/m with the exception of the FTACs which could be only be detected at concentrations higher than 40 ng/m. The MDL in water was 10 ng/L. Direct spiking of the cartridges and analyte introduction by volatilization from the glass surface onto the SPE material had recoveries between 86 and 100%. The volatile PFASs were shown to readily partition into the air rather than into water. Consequently, large losses in the amount of PFASs were observed when these were spiked into the water. Graphical abstract Wastewater treatment plant air and water samples were passed through HLB™ solid-phase materials. The eluates were injected onto a GC-MS system to simultaneously determine the volatile PFASs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5258797PMC
http://dx.doi.org/10.1007/s00216-016-0072-1DOI Listing

Publication Analysis

Top Keywords

air water
20
volatile pfass
16
wastewater treatment
12
treatment plant
12
determination volatile
8
volatile per-
8
per- polyfluoroalkyl
8
polyfluoroalkyl substances
8
plant air
8
pfass
8

Similar Publications

Washable Superhydrophobic Cotton Fabric with Photothermal Self-Healing Performance Based on Nanocrystal-MXene.

ACS Appl Mater Interfaces

January 2025

Colour Science and Textile Chemistry Research Center, College of Textiles and Clothing, Qingdao University, Qingdao, Shandong 266071, China.

Superhydrophobic fabrics suffer from being commonly penetrated by moisture after laundering, seriously deteriorating their water repellency after air drying. Numerous researchers have successfully recovered superhydrophobicity by drying in fluid ovens; however, high energy consumption and equipment dependence limit practical applications. Herein, the superhydrophobic photothermal self-healing cotton fabric (SPS cotton fabric) was fabricated by depositing a composite layer of cellulose nanocrystal-MXene (C-MXene) and polyacrylate (PA) coatings on the cotton cloth.

View Article and Find Full Text PDF

Fig (Ficus carica L.) holds economic significance in Atushi, Xinjiang, but as fig cultivation expands, disease prevalence has risen. In July 2024, approximately 22% of harvested fig (cv.

View Article and Find Full Text PDF

The atmospheric dicarboxylic acids (DCAs) have a significant impact on the climate and indirectly affect human health, making them important organic substances. PM bound DCAs were analysed for Jorhat, India, 2019. In addition to the temporal variability, seasonal variation throughout the year and the impact of varying meteorological factors on DCAs concentration have also been studied.

View Article and Find Full Text PDF

Bioinspired Conductivity-Enhanced, Self-Healing, and Renewable Silk Fibroin Hydrogel for Wearable Sensors with High Sensitivity.

ACS Appl Mater Interfaces

January 2025

Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Road 26, Shijiazhuang 050080, PR China.

The development of silk fibroin-based hydrogels with excellent biocompatibility, aqueous processability, and facile controllability in structure is indeed an exciting advancement for biological research and strain sensor applications. However, silk fibroin-based hydrogel strain sensors that combine high conductivity, high stretchability, reusability, and high selectivity are still desired. Herein, we report a simple method for preparing double-network hydrogels including silk fibroin and poly(acrylic acid) sodium-polyacrylate (PAA-PAAS) networks.

View Article and Find Full Text PDF

Transmission electron microscopy (TEM) is an indispensable tool for elucidating the intrinsic atomic structures of materials and provides deep insights into defect dynamics, phase transitions, and nanoscale structural details. While numerous intriguing physical properties have been revealed in recently discovered two-dimensional (2D) quantum materials, many exhibit significant sensitivity to water and oxygen under ambient conditions. This inherent instability complicates sample preparation for TEM analysis and hinders accurate property measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!